• Abalos, M., and Coauthors, 2020: Future trends in stratosphere-to-troposphere transport in CCMI models. Atmos. Chem. Phys., 20, 68836901, https://doi.org/10.5194/acp-20-6883-2020.

    • Search Google Scholar
    • Export Citation
  • Abalos, M., and Coauthors, 2021: The Brewer–Dobson circulation in CMIP6. Atmos. Chem. Phys., 21, 13 57113 591, https://doi.org/10.5194/acp-21-13571-2021.

    • Search Google Scholar
    • Export Citation
  • Adam, O., and Coauthors, 2018: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, S. E., and Coauthors, 2020: Historical (1850–2014) aerosol evolution and role on climate forcing using the GISS ModelE2.1 contribution to CMIP6. J. Adv. Model. Earth Syst., 12, e2019MS001978, https://doi.org/10.1029/2019MS001978.

    • Search Google Scholar
    • Export Citation
  • Birner, T., S. Davis, and D. Seidel, 2014: The changing width of Earth’s tropical belt. Phys. Today, 67, 3844, https://doi.org/10.1063/PT.3.2620.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer–Dobson circulation. Climate Dyn., 27, 727741, https://doi.org/10.1007/s00382-006-0162-4.

    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., A. G. Pendergrass, A. D. Rapp, and K. R. Wodzicki, 2018: Response of the intertropical convergence zone to climate change: Location, width, and strength. Curr. Climate Change Rep., 4, 355370, https://doi.org/10.1007/s40641-018-0110-5.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Climate, 32, 859875, https://doi.org/10.1175/JCLI-D-18-0330.1.

    • Search Google Scholar
    • Export Citation
  • Chrysanthou, A., A. C. Maycock, and M. P. Chipperfield, 2020: Decomposing the response of the stratospheric Brewer–Dobson circulation to an abrupt quadrupling in CO2. Wea. Climate Dyn., 1, 155174, https://doi.org/10.5194/wcd-1-155-2020.

    • Search Google Scholar
    • Export Citation
  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, https://doi.org/10.1029/2005GL022924.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer–Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 27312739, https://doi.org/10.1175/2008JAS2712.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 Forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., N. Butchart, and N. Calvo, 2014: The morphology of the Brewer–Dobson circulation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc., 140, 19581965, https://doi.org/10.1002/qj.2258.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. McIntyre, T. Shepherd, C. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Search Google Scholar
    • Export Citation
  • Li, F., R. S. Stolarski, S. Pawson, P. A. Newman, and D. Waugh, 2010: Narrowing of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in chemistry-climate model simulations of the 21st century. Geophys. Res. Lett., 37, L13702, https://doi.org/10.1029/2010GL043718.

    • Search Google Scholar
    • Export Citation
  • Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer–Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res. Atmos., 118, 7384, https://doi.org/10.1029/2012JD018813.

    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., D. Waugh, and K. Grise, 2019: Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys. Res. Lett., 46, 70457053, https://doi.org/10.1029/2019GL083345.

    • Search Google Scholar
    • Export Citation
  • Mitevski, I., C. Orbe, R. Chemke, L. Nazarenko, and L. M. Polvani, 2021: Non-monotonic response of the climate system to abrupt CO2 forcing. Geophys. Res. Lett., 48, e2020GL090861, https://doi.org/10.1029/2020GL090861.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coauthors, 2020: GISS model E2.2: A climate model optimized for the middle atmosphere—2. Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., 1995: Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res., 100, 51735191, https://doi.org/10.1029/94JD03122.

    • Search Google Scholar
    • Export Citation
  • Rosenlof, K. H., and J. R. Holton, 1993: Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res., 98, 10 46510 479, https://doi.org/10.1029/93JD00392.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J., N. Butchart, and S. C. Hardiman, 2012: The Brewer–Dobson circulation inferred from ERA-Interim. Quart. J. Roy. Meteor. Soc., 138, 878888, https://doi.org/10.1002/qj.966.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., 2019: Mechanisms of future predicted changes in the zonal mean mid-latitude circulation. Curr. Climate Change Rep., 5, 345357, https://doi.org/10.1007/s40641-019-00145-8.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Z. Tan, 2018: Testing latitudinally dependent explanations of the circulation response to increased CO2 using aquaplanet models. Geophys. Res. Lett., 45, 98619869, https://doi.org/10.1029/2018GL078974.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., and C. McLandress, 2011: A robust mechanism for strengthening of the Brewer–Dobson circulation in response to climate change: Critical-layer control of subtropical wave breaking. J. Atmos. Sci., 68, 784797, https://doi.org/10.1175/2010JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2012: Upward shift of the atmospheric general circulation under global warming: Theory and simulations. J. Climate, 25, 82598276, https://doi.org/10.1175/JCLI-D-11-00699.1.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 282 282 183
Full Text Views 134 134 77
PDF Downloads 155 155 85

Connections between Upper Tropospheric and Lower Stratospheric Circulation Responses to Increased CO2

Molly E. MenzelaNASA Goddard Institute for Space Studies, New York, New York
bDepartment of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Molly E. Menzel in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9598-2996
,
Darryn W. WaughbDepartment of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland

Search for other papers by Darryn W. Waugh in
Current site
Google Scholar
PubMed
Close
, and
Clara OrbeaNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

There are myriad ways atmospheric circulation responds to increased CO2. In the troposphere, the region of the tropical upwelling narrows, the Hadley cells expand, and the upper-level subtropical zonal winds that comprise the subtropical jet strengthen. In the stratosphere, the tropical upwelling narrows and strengthens, enhancing the Brewer–Dobson circulation. Despite the robustness of these projections, dynamical coupling between the features remains unclear. In this study, we analyze output from the NASA Goddard Institute for Space Studies (GISS) ModelE coupled climate model to examine any connection between the upper tropospheric and lower stratospheric circulation by considering the features’ seasonality, hemispheric asymmetry, scaling, and transient response to a broad range of CO2 forcings. We find that a narrowing and strengthening of upper tropospheric upwelling occurs with a strengthening of the subtropical jet. There is also a narrowing and strengthening of lower stratospheric upwelling that is related to an equatorward shift in critical latitude for wave breaking and the associated strengthening of the subtropical lower stratosphere’s zonal winds. However, the stratospheric responses display different seasonal, hemispheric, and transient patterns than those in the troposphere, indicating independent circulation changes between the two domains.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Molly Menzel, molly.menzel@nasa.gov

Abstract

There are myriad ways atmospheric circulation responds to increased CO2. In the troposphere, the region of the tropical upwelling narrows, the Hadley cells expand, and the upper-level subtropical zonal winds that comprise the subtropical jet strengthen. In the stratosphere, the tropical upwelling narrows and strengthens, enhancing the Brewer–Dobson circulation. Despite the robustness of these projections, dynamical coupling between the features remains unclear. In this study, we analyze output from the NASA Goddard Institute for Space Studies (GISS) ModelE coupled climate model to examine any connection between the upper tropospheric and lower stratospheric circulation by considering the features’ seasonality, hemispheric asymmetry, scaling, and transient response to a broad range of CO2 forcings. We find that a narrowing and strengthening of upper tropospheric upwelling occurs with a strengthening of the subtropical jet. There is also a narrowing and strengthening of lower stratospheric upwelling that is related to an equatorward shift in critical latitude for wave breaking and the associated strengthening of the subtropical lower stratosphere’s zonal winds. However, the stratospheric responses display different seasonal, hemispheric, and transient patterns than those in the troposphere, indicating independent circulation changes between the two domains.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Molly Menzel, molly.menzel@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 8.67 MB)
Save