Deciphering the Trend and Interannual Variability of Temperature and Precipitation Extremes over Greenland during 1958–2019

Ting Wei aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Ting Wei in
Current site
Google Scholar
PubMed
Close
,
Shoudong Zhao aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Shoudong Zhao in
Current site
Google Scholar
PubMed
Close
,
Brice Noël bInstitute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Search for other papers by Brice Noël in
Current site
Google Scholar
PubMed
Close
,
Qing Yan cNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Qing Yan in
Current site
Google Scholar
PubMed
Close
, and
Wei Qi aState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Wei Qi in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Greenland experienced multiple extreme weather/climate events in recent decades that led to significant melting of the ice sheet. However, how the intensity of extreme climate events over Greenland varied under recent warming has not been fully examined. Here, we collect 176 in situ observations over Greenland and demonstrate that the observed extreme temperature/precipitation events over Greenland are well captured by the RACMO2.3p2 model, in terms of climatological distribution, interannual variability, and long-term trend. Thus, we then investigate the spatiotemporal features of extreme events over Greenland during 1958–2019, using the daily model outputs at 5.5-km resolution. The simulated annual maximum temperature exhibits a significant increasing trend (∼0.13°C decade−1) during 1958–2019, whereas there is a weakening trend (−0.24°C decade−1) in annual minimum temperature over Greenland, especially after the 1990s (−1.24°C decade−1). For the interannual variability, changes in temperature extremes between warm and cold temperature years share large similarities with the distributions of long-term trends. The extreme precipitation events measured by annual maximum daily precipitation amount show a profound increasing trend (0.52 mm day−1 decade−1) over northeastern Greenland during 1958–2019, with large interannual variability in the ice-free coastal region and southern Greenland. Additionally, the changes in extreme warm and cold events are generally linked with the variation of Greenland blocking in summer and Arctic polar vortex in winter, respectively, in terms of favorable circulation background, and the extreme precipitation events are often associated with the position of the polar jet stream.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting Wei, weiting@cma.gov.cn

Abstract

Greenland experienced multiple extreme weather/climate events in recent decades that led to significant melting of the ice sheet. However, how the intensity of extreme climate events over Greenland varied under recent warming has not been fully examined. Here, we collect 176 in situ observations over Greenland and demonstrate that the observed extreme temperature/precipitation events over Greenland are well captured by the RACMO2.3p2 model, in terms of climatological distribution, interannual variability, and long-term trend. Thus, we then investigate the spatiotemporal features of extreme events over Greenland during 1958–2019, using the daily model outputs at 5.5-km resolution. The simulated annual maximum temperature exhibits a significant increasing trend (∼0.13°C decade−1) during 1958–2019, whereas there is a weakening trend (−0.24°C decade−1) in annual minimum temperature over Greenland, especially after the 1990s (−1.24°C decade−1). For the interannual variability, changes in temperature extremes between warm and cold temperature years share large similarities with the distributions of long-term trends. The extreme precipitation events measured by annual maximum daily precipitation amount show a profound increasing trend (0.52 mm day−1 decade−1) over northeastern Greenland during 1958–2019, with large interannual variability in the ice-free coastal region and southern Greenland. Additionally, the changes in extreme warm and cold events are generally linked with the variation of Greenland blocking in summer and Arctic polar vortex in winter, respectively, in terms of favorable circulation background, and the extreme precipitation events are often associated with the position of the polar jet stream.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ting Wei, weiting@cma.gov.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7445 MB)
Save
  • Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dyn., 52, 17391760, https://doi.org/10.1007/s00382-018-4223-2.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and Coauthors, 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen, 2012: Greenland Ice Sheet albedo feedback: Thermodynamics and atmospheric drivers. Cryosphere, 6, 821839, https://doi.org/10.5194/tc-6-821-2012.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496, https://doi.org/10.1038/nclimate1452.

    • Search Google Scholar
    • Export Citation
  • Culberg, R., D. M. Schroeder, and W. Chu, 2021: Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun., 12, 2336, https://doi.org/10.1038/s41467-021-22656-5.

    • Search Google Scholar
    • Export Citation
  • Cullather, R. I., and Coauthors, 2020: Anomalous circulation in July 2019 resulting in mass loss on the Greenland Ice Sheet. Geophys. Res. Lett., 47, e2020GL087263, https://doi.org/10.1029/2020GL087263.

    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., 2020: Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv., 6, eaay2368, https://doi.org/10.1126/sciadv.aay2368.

    • Search Google Scholar
    • Export Citation
  • Fausto, R. S., and Coauthors, 2021: Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth Syst. Sci. Data, 13, 38193845, https://doi.org/10.5194/essd-13-3819-2021.

    • Search Google Scholar
    • Export Citation
  • Fettweis, X., and Coauthors, 2020: GrSMBMIP: Intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 14, 39353958, https://doi.org/10.5194/tc-14-3935-2020.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2015: Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Climate Change, 5, 560564, https://doi.org/10.1038/nclimate2617.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, https://doi.org/10.1126/science.1234532.

    • Search Google Scholar
    • Export Citation
  • Guo, D., Y. Zhang, X. Gao, N. Pepin, and J. Sun, 2021: Evaluation and ensemble projection of extreme high and low temperature events in China from four dynamical downscaling simulations. Int. J. Climatol., 41 (Suppl. 1), E1252E1269, https://doi.org/10.1002/joc.6765.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341, https://doi.org/10.1175/2007JCLI1964.1.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2014: Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012. Int. J. Climatol., 34, 10221037, https://doi.org/10.1002/joc.3743.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2020: Mass balance of the ice sheets and glaciers—Progress since AR5 and challenges. Earth-Sci. Rev., 201, 102976, https://doi.org/10.1016/j.earscirev.2019.102976.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2021: Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol., 41 (Suppl. 1), E1336E1352, https://doi.org/10.1002/joc.6771.

    • Search Google Scholar
    • Export Citation
  • Hawley, R. L., Z. R. Courville, L. M. Kehrl, E. R. Lutz, E. C. Osterberg, T. B. Overly, and G. J. Wong, 2014: Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland inland traverse. J. Glaciol., 60, 375382, https://doi.org/10.3189/2014JoG13J141.

    • Search Google Scholar
    • Export Citation
  • Herring, S. C., N. Christidis, A. Hoell, J. P. Kossin, C. J. Schreck III, and P. A. Stott, 2018: Introduction to Explaining Extreme Events of 2016 from a Climate Perspective [in “Explaining Extreme Events of 2016 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 99 (1), S54S59, https://doi.org/10.1175/BAMS-D-17-0284.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2017: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv., 3, e1700584, https://doi.org/10.1126/sciadv.1700584.

    • Search Google Scholar
    • Export Citation
  • Hofer, S., A. J. Tedstone, X. Fettweis, and J. L. Bamber, 2019: Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Climate Change, 9, 523528, https://doi.org/10.1038/s41558-019-0507-8.

    • Search Google Scholar
    • Export Citation
  • Huai, B. J., M. R. van den Broeke, C. H. Reijmer, and J. Cappellen, 2021: Quantifying rainfall in Greenland: A combined observational and modeling approach. J. Appl. Meteor. Climatol., 60, 11711188, https://doi.org/10.1175/JAMC-D-20-0284.1.

    • Search Google Scholar
    • Export Citation
  • Huai, B. J., M. R. van den Broeke, C. H. Reijmer, and B. Noël, 2022: A daily 1-km resolution Greenland rainfall climatology (1958–2020) from statistical downscaling of a regional atmospheric climate model. J. Geophys. Res. Atmos., 127, e2022JD036688, https://doi.org/10.1029/2022JD036688.

    • Search Google Scholar
    • Export Citation
  • IMBIE Team, 2020: Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature, 579, 233239, https://doi.org/10.1038/s41586-019-1855-2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., N. Nicholls, and A. Ghazi, 1999: CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes: Workshop summary. Climatic Change, 42, 37, https://doi.org/10.1023/A:1005491526870.

    • Search Google Scholar
    • Export Citation
  • Kharin, V. V., F. W. Zwiers, X. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 14191444, https://doi.org/10.1175/JCLI4066.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., S.-K. Min, X. Zhang, J. Sillmann, and M. Sandstad, 2020: Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Wea. Climate Extremes, 29, 100269, https://doi.org/10.1016/j.wace.2020.100269.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. S., and Coauthors, 2016: Annual Greenland accumulation rates (2009–2012) from airborne snow radar. Cryosphere, 10, 17391752, https://doi.org/10.5194/tc-10-1739-2016.

    • Search Google Scholar
    • Export Citation
  • Lamarche-Gagnon, G., and Coauthors, 2019: Greenland melt drives continuous export of methane from the ice-sheet bed. Nature, 565, 7377, https://doi.org/10.1038/s41586-018-0800-0.

    • Search Google Scholar
    • Export Citation
  • Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard, and P. Kuipers Munneke, 2012: A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39, L04501, https://doi.org/10.1029/2011GL050713.

    • Search Google Scholar
    • Export Citation
  • Lewis, G., and Coauthors, 2019: Recent precipitation decrease across the western Greenland Ice Sheet percolation zone. Cryosphere, 13, 27972815, https://doi.org/10.5194/tc-13-2797-2019.

    • Search Google Scholar
    • Export Citation
  • Lott, N., R. Vose, S. A. Del Greco, T. F. Ross, S. J. Worley, and J. Comeaux, 2008: The integrated surface database: Partnerships and progress. 24th Conf. on Interactive Information and Processing Systems, New Orleans, LA, Amer. Meteor. Soc., 3B.5, https://ams.confex.com/ams/88Annual/techprogram/paper_131387.htm.

  • Mankoff, K. D., and Coauthors, 2021: Greenland Ice Sheet mass balance from 1840 through next week. Earth Syst. Sci. Data, 13, 50015025, https://doi.org/10.5194/essd-13-5001-2021.

    • Search Google Scholar
    • Export Citation
  • Mattingly, K. S., T. L. Mote, X. Fettweis, D. van As, K. Van Tricht, S. Lhermitte, C. Pettersen, and R. S. Fausto, 2020: Strong summer atmospheric rivers trigger Greenland Ice Sheet melt through spatially varying surface energy balance and cloud regimes. J. Climate, 33, 68096832, https://doi.org/10.1175/JCLI-D-19-0835.1.

    • Search Google Scholar
    • Export Citation
  • Mernild, S. H., and Coauthors, 2015: Greenland precipitation trends in a long-term instrumental climate context (1890–2012): Evaluation of coastal and ice core records. Int. J. Climatol., 35, 303320, https://doi.org/10.1002/joc.3986.

    • Search Google Scholar
    • Export Citation
  • Moon, T. A., A. S. Gardner, B. Csatho, I. Parmuzin, and M. A. Fahnestock, 2020: Rapid reconfiguration of the Greenland Ice Sheet coastal margin. J. Geophys. Res. Earth Surf., 125, e2020JF005585, https://doi.org/10.1029/2020JF005585.

    • Search Google Scholar
    • Export Citation
  • Moon, T. A., and Coauthors, 2021: Arctic Report Card 2021: Rapid and pronounced warming continues to drive the evolution of the Arctic environment. NOAA Tech. Rep., 126 pp., https://arctic.noaa.gov/Portals/7/ArcticReportCard/Documents/ArcticReportCard_full_report2021.pdf.

  • Mote, T. L., 2007: Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007. Geophys. Res. Lett., 34, L22507, https://doi.org/10.1029/2007GL031976.

    • Search Google Scholar
    • Export Citation
  • Mouginot, J., and Coauthors, 2019: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA, 116, 92399244, https://doi.org/10.1073/pnas.1904242116.

    • Search Google Scholar
    • Export Citation
  • Nghiem, S. V., and Coauthors, 2012: The extreme melt across the Greenland Ice Sheet in 2012. Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611.

    • Search Google Scholar
    • Export Citation
  • Niwano, M., J. E. Box, A. Wehrlé, B. Vandecrux, W. T. Colgan, and J. Cappelen, 2021: Rainfall on the Greenland Ice Sheet: Present‐day climatology from a high‐resolution non‐hydrostatic polar regional climate model. Geophys. Res. Lett., 48, e2021GL092942, https://doi.org/10.1029/2021GL092942.

    • Search Google Scholar
    • Export Citation
  • Noël, B., W. J. van de Berg, S. Lhermitte, and M. R. van den Broeke, 2019: Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.

    • Search Google Scholar
    • Export Citation
  • Preece, J. R., L. J. Wachowicz, T. L. Mote, M. Tedesco, and X. Fettweis, 2022: Summer Greenland blocking diversity and its impact on the surface mass balance of the Greenland Ice Sheet. J. Geophys. Res. Atmos., 127, e2021JD035489, https://doi.org/10.1029/2021JD035489.

    • Search Google Scholar
    • Export Citation
  • Sasgen, I., and Coauthors, 2020: Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ., 1, 8, https://doi.org/10.1038/s43247-020-0010-1.

    • Search Google Scholar
    • Export Citation
  • Sasgen, I., A. Salles, M. Wegmann, B. Wouters, X. Fettweis, B. P. Y. Noël, and C. Beck, 2022: Arctic glaciers record wavier circumpolar winds. Nat. Climate Change, 12, 249255, https://doi.org/10.1038/s41558-021-01275-4.

    • Search Google Scholar
    • Export Citation
  • Schaller, N., J. Sillmann, J. Anstey, E. M. Fischer, C. M. Grams, and S. Russo, 2018: Influence of blocking on northern European and western Russian heatwaves in large climate model ensembles. Environ. Res. Lett., 13, 054015, https://doi.org/10.1088/1748-9326/aaba55.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513–1766.

  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos., 118, 17161733, https://doi.org/10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Stark, D., S. van Hal, D. Marriott, J. Ellis, and J. Harkness, 2007: Irritable bowel syndrome: A review on the role of intestinal protozoa and the importance of their detection and diagnosis. Int. J. Parasitol., 37, 1120, https://doi.org/10.1016/j.ijpara.2006.09.009.

    • Search Google Scholar
    • Export Citation
  • Steffen, K., J. E. Box, and W. Abdalati, 1996: Greenland Climate Network: GC-Net. Glaciers, ice sheets and volcanoes: Tribute to M. Meier, USACE CRREL Special Rep. 96-97, 98–103.

  • Tedesco, M., and X. Fettweis, 2020: Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere, 14, 12091223, https://doi.org/10.5194/tc-14-1209-2020.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., J. E. Box, T. S. Jensen, T. Mote, A. K. Rennermalm, L. C. Smith, R. S. W. van de Wal, and J. Wahr, 2014: Greenland Ice Sheet [in “State of the Climate in 2002”]. Bull. Amer. Meteor. Soc., 95 (7), S136S138, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyaratnam, and J. Stroeve, 2016: The darkening of the Greenland Ice Sheet: Trends, drivers, and projections (1981–2100). Cryosphere, 10, 477496, https://doi.org/10.5194/tc-10-477-2016.

    • Search Google Scholar
    • Export Citation
  • Undén, P., and Coauthors, 2002: HIRLAM-5 scientific documentation. Swedish Meteorological and Hydrological Institute Doc., 146 pp., https://repositorio.aemet.es/bitstream/20.500.11765/6323/1/HIRLAMSciDoc_Dec2002.pdf.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

    • Search Google Scholar
    • Export Citation
  • van den Broeke, M. R., E. M. Enderlin, I. M. Howat, P. Kuipers Munneke, B. P. Y. Noël, W. J. van de Berg, E. van Meijgaard, and B. Wouters, 2016: On the recent contribution of the Greenland Ice Sheet to sea level change. Cryosphere, 10, 19331946, https://doi.org/10.5194/tc-10-1933-2016.

    • Search Google Scholar
    • Export Citation
  • Van Meijgaard, E., L. H. van Ulft, W. J. van de Berg, F. C. Bosveld, B. J. J. M. van den Hurk, G. Lenderink, and A. P. Siebesma, 2008: The KNMI Regional Atmospheric Climate Model RACMO version 2.1. KNMI Tech. Rep. 302, 50 pp., https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR302.pdf.

  • Walsh, J. E., T. J. Ballinger, E. S. Euskirchen, E. Hanna, J. Mård, J. E. Overland, H. Tangen, and T. Vihma, 2020: Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev., 209, 103324, https://doi.org/10.1016/j.earscirev.2020.103324.

    • Search Google Scholar
    • Export Citation
  • Walter, F., J. Chaput, and M. P. Lüthi, 2014: Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics. Geology, 42, 487490, https://doi.org/10.1130/G35492.1.

    • Search Google Scholar
    • Export Citation
  • Wei, T., Q. Yan, and M. Ding, 2019: Distribution and temporal trends of temperature extremes over Antarctica. Environ. Res. Lett., 14, 084040, https://doi.org/10.1088/1748-9326/ab33c1.

    • Search Google Scholar
    • Export Citation
  • Wei, T., B. Noël, M. Ding, and Q. Yan, 2022: Spatiotemporal variations of extreme events in surface mass balance over Greenland during 1958–2019. Int. J. Climatol., 42, 80088023, https://doi.org/10.1002/joc.7689.

    • Search Google Scholar
    • Export Citation
  • White, P. W., Ed., 2001: Physical processes (CY23R4). ECMWF IFS Doc., 166 pp., https://www.ecmwf.int/sites/default/files/elibrary/2003/77030-ifs-documentation-cy23r4-part-iv-physical-processes_1.pdf.

  • Wong, G. J., E. C. Osterberg, R. L. Hawley, Z. R. Courville, D. G. Ferris, and J. A. Howley, 2015: Coast-to-interior gradient in recent northwest Greenland precipitation trends (1952–2012). Environ. Res. Lett., 10, 114008, https://doi.org/10.1088/1748-9326/10/11/114008.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., B. Huai, M. R. van den Broeke, J. Cappelen, M. Ding, Y. Wang, and W. Sun, 2022: Temporal and spatial variability in contemporary Greenland warming (1958–2020). J. Climate, 35, 27552767, https://doi.org/10.1175/JCLI-D-21-0313.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1054 529 35
Full Text Views 231 124 6
PDF Downloads 288 141 7