An Origin of North American Monsoon Retreat Biases in Climate Models

Jiacheng Ye aUniversity of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Jiacheng Ye in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1477-5758
and
Zhuo Wang aUniversity of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Many coupled climate models suffer from a late retreat bias in North American monsoon (NAM) simulations, which is manifested by overestimated precipitation in October. The overestimated precipitation has long been attributed to the negative sea surface temperature (SST) biases in the tropical Atlantic and insufficient model resolution to resolve mesoscale features. However, we found little correlation between CMIP6 model resolutions and the simulated NAM retreat-season precipitation in October. Instead, we showed that tropical eastern North Pacific SST biases and the associated large-scale circulation biases play a dominant role in inducing the retreat-season biases, with SST biases in other ocean basins playing a secondary role. As revealed by simulations using a hierarchy of models, the positive SST biases in the tropical eastern North Pacific enhance local convection and lead to positive diabatic heating biases throughout the troposphere; the diabatic heating biases generate a Matsuno–Gill type of response that strengthens the subtropical high over the North Atlantic and weakens the subtropical high over the North Pacific, enhancing the low-level northward moisture transport from the tropics to the NAM region. The conclusion is robust across phase 6 of CMIP (CMIP6) models. The precipitation seasonality in the NAM region is used to constrain future projection. The “good” CMIP6 models project that the timing of the NAM peak season remains the same, but the peak-season precipitation is reduced and monsoon retreat is delayed, while the “poor” CMIP6 models project a delayed monsoon peak season with slightly enhanced peak-season precipitation. Both model groups project a drier dry season in the NAM region.

This article is included in the Process-oriented Diagnostics in CMIP6 and Beyond Special Collection.

Ye’s current affiliation: University of Chicago, Chicago, Illinois.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zwang.jas@ametsoc.org

Abstract

Many coupled climate models suffer from a late retreat bias in North American monsoon (NAM) simulations, which is manifested by overestimated precipitation in October. The overestimated precipitation has long been attributed to the negative sea surface temperature (SST) biases in the tropical Atlantic and insufficient model resolution to resolve mesoscale features. However, we found little correlation between CMIP6 model resolutions and the simulated NAM retreat-season precipitation in October. Instead, we showed that tropical eastern North Pacific SST biases and the associated large-scale circulation biases play a dominant role in inducing the retreat-season biases, with SST biases in other ocean basins playing a secondary role. As revealed by simulations using a hierarchy of models, the positive SST biases in the tropical eastern North Pacific enhance local convection and lead to positive diabatic heating biases throughout the troposphere; the diabatic heating biases generate a Matsuno–Gill type of response that strengthens the subtropical high over the North Atlantic and weakens the subtropical high over the North Pacific, enhancing the low-level northward moisture transport from the tropics to the NAM region. The conclusion is robust across phase 6 of CMIP (CMIP6) models. The precipitation seasonality in the NAM region is used to constrain future projection. The “good” CMIP6 models project that the timing of the NAM peak season remains the same, but the peak-season precipitation is reduced and monsoon retreat is delayed, while the “poor” CMIP6 models project a delayed monsoon peak season with slightly enhanced peak-season precipitation. Both model groups project a drier dry season in the NAM region.

This article is included in the Process-oriented Diagnostics in CMIP6 and Beyond Special Collection.

Ye’s current affiliation: University of Chicago, Chicago, Illinois.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zwang.jas@ametsoc.org

Supplementary Materials

    • Supplemental Materials (PDF 2.5970 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137, https://doi.org/10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bock, L., and Coauthors, 2020: Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and S. Pascale, 2021: Mechanical forcing of the North American monsoon by orography. Nature, 599, 611615, https://doi.org/10.1038/s41586-021-03978-2.

    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, https://doi.org/10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., D. J. Gochis, and L. O. Mearns, 2013: Towards assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, https://doi.org/10.1175/JCLI-D-12-00538.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J.-K. Schemm, and H.-M. Henry Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, https://doi.org/10.1175/JCLI-D-11-00441.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., O. M. Pauluis, L. R. Leung, and F. Zhang, 2020: Significant contribution of mesoscale overturning to tropical mass and energy transport revealed by the ERA5 reanalysis. Geophys. Res. Lett. 47, e2019GL085333, https://doi.org/10.1029/2019GL085333.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., T. Zhou, L. Zhang, X. Chen, W. Zhang, and J. Jiang, 2020: Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett., 47, e2019GL086902, https://doi.org/10.1029/2019GL086902.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., G. Miguez-Macho, and H. Hu, 2016: WRF with water vapor tracers: A study of moisture sources for the North American monsoon. J. Hydrometeor., 17, 19151927, https://doi.org/10.1175/JHM-D-15-0221.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., and J. C. Leal, 2003: Summertime surges over the Gulf of California: Aspects of their climatology, mean structure, and evolution from radiosonde, NCEP reanalysis, and rainfall data. Wea. Forecasting, 18, 5574, https://doi.org/10.1175/1520-0434(2003)018<0055:SSOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Favors, J. E., and J. T. Abatzoglou, 2013: Regional surges of monsoonal moisture into the southwestern United States. Mon. Wea. Rev., 141, 182191, https://doi.org/10.1175/MWR-D-12-00037.1.

    • Search Google Scholar
    • Export Citation
  • Feng, X., A. Porporato, and I. Rodriguez-Iturbe, 2013: Changes in rainfall seasonality in the tropics. Nat. Climate Change, 3, 811815, https://doi.org/10.1038/nclimate1907.

    • Search Google Scholar
    • Export Citation
  • Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Wea. Rev., 128, 29832989, https://doi.org/10.1175/1520-0493(2000)128<2983:TRBTEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, https://doi.org/10.1175/JCLI-D-13-00044.1.

    • Search Google Scholar
    • Export Citation
  • Gusain, A., S. Ghosh, and S. Karmakar, 2020: Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res., 232, 104680, https://doi.org/10.1016/j.atmosres.2019.104680.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 298306, https://doi.org/10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hernandez, M., and L. Chen, 2022: Future land precipitation changes over the North American monsoon region using CMIP5 and CMIP6 simulations. J. Geophys. Res. Atmos., 127, e2021JD035911, https://doi.org/10.1029/2021JD035911.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jana, S., B. Rajagopalan, M. A. Alexander, and A. J. Ray, 2018: Understanding the dominant sources and tracks of moisture for summer rainfall in the southwest United States. J. Geophys. Res. Atmos., 123, 48504870, https://doi.org/10.1029/2017JD027652.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., L. Krishnamurthy, A. T. Wittenberg, B. Xiang, G. A. Vecchi, S. B. Kapnick, and S. Pascale, 2020: The impact of sea surface temperature biases on North American precipitation in a high-resolution climate model. J. Climate, 33, 24272447, https://doi.org/10.1175/JCLI-D-19-0417.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, B. D. McNoldy, P. J. Rogers, and R. K. Taft, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20, 16281648, https://doi.org/10.1175/JCLI4087.1.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, https://doi.org/10.1175/2008JCLI2368.1.

    • Search Google Scholar
    • Export Citation
  • Koseki, S., N. Keenlyside, T. Demissie, T. Toniazzo, F. Counillon, I. Bethke, M. Ilicak, and M.-L. Shen, 2018: Causes of the large warm bias in the Angola–Benguela frontal zone in the Norwegian Earth System Model. Climate Dyn., 50, 46514670, https://doi.org/10.1007/s00382-017-3896-2.

    • Search Google Scholar
    • Export Citation
  • Kullback, S., and R. A. Leibler, 1951: On information and sufficiency. Ann. Math. Stat., 22, 7986, https://doi.org/10.1214/aoms/1177729694.

    • Search Google Scholar
    • Export Citation
  • Lee, J., K. R. Sperber, P. J. Gleckler, K. E. Taylor, and C. J. W. Bonfils, 2021: Benchmarking performance changes in the simulation of extratropical modes of variability across CMIP generations. J. Climate, 34, 69456969, https://doi.org/10.1175/JCLI-D-20-0832.1.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, M. Ting, and Y. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Search Google Scholar
    • Export Citation
  • Liang, X. Z., J. Zhu, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2008: Do CGCMs simulate the North American monsoon precipitation seasonal–interannual variability? J. Climate, 21, 44244448, https://doi.org/10.1175/2008JCLI2174.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J., B. E. Mapes, K. M. Weickmann, G. N. Kiladis, S. D. Schubert, M. J. Suarez, J. T. Bacmeister, and M. Lee, 2008: North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs. J. Climate, 21, 29192937, https://doi.org/10.1175/2007JCLI1815.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, https://doi.org/10.1175/JCLI3684.1.

    • Search Google Scholar
    • Export Citation
  • Mejia, J. F., M. W. Douglas, and P. J. Lamb, 2016: Observational investigation of relationships between moisture surges and mesoscale‐to large‐scale convection during the North American monsoon. Int. J. Climatol., 36, 25552569, https://doi.org/10.1002/joc.4512.

    • Search Google Scholar
    • Export Citation
  • Meyer, J. D. D., and J. Jin, 2016: Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon. Climate Dyn., 46, 29612976, https://doi.org/10.1007/s00382-015-2744-5.

    • Search Google Scholar
    • Export Citation
  • Meyer, J. D. D., and J. Jin, 2017: The response of future projections of the North American monsoon when combining dynamical downscaling and bias correction of CCSM4 output. Climate Dyn., 49, 433447, https://doi.org/10.1007/s00382-016-3352-8.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris, and P. M. Caldwell, 2021: Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Climate Change, 11, 501507, https://doi.org/10.1038/s41558-021-01039-0.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., and S. Bordoni, 2016: Tropical and extratropical controls of Gulf of California surges and summertime precipitation over the southwestern United States. Mon. Wea. Rev., 144, 26952718, https://doi.org/10.1175/MWR-D-15-0429.1.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, A. Porporato, and S. ul Hasson, 2015: Analysis of rainfall seasonality from observations and climate models. Climate Dyn., 44, 32813301, https://doi.org/10.1007/s00382-014-2278-2.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., S. Bordoni, S. B. Kapnick, G. A. Vecchi, L. Jia, T. L. Delworth, S. Underwood, and W. Anderson, 2016: The impact of horizontal resolution on North American monsoon Gulf of California moisture surges in a suite of coupled global climate models. J. Climate, 29, 79117936, https://doi.org/10.1175/JCLI-D-16-0199.1.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and H. Tokinaga, 2020: An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Climate Dyn., 55, 25792601, https://doi.org/10.1007/s00382-020-05409-w.

    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, https://doi.org/10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic‐scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres-Alavez, A., T. Cavazos, and C. Turrent, 2014: Land–sea thermal contrast and intensity of the North American monsoon under climate change conditions. J. Climate, 27, 45664580, https://doi.org/10.1175/JCLI-D-13-00557.1.

    • Search Google Scholar
    • Export Citation
  • Varuolo-Clarke, A. M., K. A. Reed, and B. Medeiros, 2019: Characterizing the North American monsoon in the Community Atmosphere Model: Sensitivity to resolution and topography. J. Climate, 32, 83558372, https://doi.org/10.1175/JCLI-D-18-0567.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., C. Jin, and J. Liu, 2020: Understanding future change of global monsoons projected by CMIP6 models. J. Climate, 33, 64716489, https://doi.org/10.1175/JCLI-D-19-0993.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Xin, X., T. Wu, J. Zhang, J. Yao, and Y. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol., 40, 64236440, https://doi.org/10.1002/joc.6590.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 691 431 25
Full Text Views 271 117 6
PDF Downloads 298 101 4