Synoptic Atmospheric Patterns Responsible for Summer Extreme High-Temperature Events over Northern Asia: Evolution, Precursor, and Long-Term Change

Haixu Hong aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Haixu Hong in
Current site
Google Scholar
PubMed
Close
,
Jianqi Sun aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jianqi Sun in
Current site
Google Scholar
PubMed
Close
, and
Huijun Wang bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the synoptic atmospheric patterns responsible for regional extreme high-temperature events (REHEs) over northern Asia (NA) are investigated. First, a hybrid regionalization approach is applied to the daily maximum temperature (Tmax), and three subregions of NA can be identified: western NA, central NA, and southeastern NA. To better understand the mechanism for the NA REHE formation, the REHE-related synoptic circulation patterns over each subregion are further categorized into two types. These six synoptic circulation patterns influence the NA REHE occurrence through different radiation and advection processes. Generally, the radiation process dominates the NA REHE occurrence, while the horizontal temperature advection plays a more important role in the synoptic dipole patterns than in the monopole high patterns. The heatwaves associated with the six synoptic patterns can last more than 3.8 days, with a maximum of 2 weeks. From the forecasting perspective, six wave trains are explored as the precursors of these six synoptic circulation patterns, separately. The wave trains originate from the North Atlantic Ocean and Europe with at least a 3-day lead and then propagate eastward to NA, exerting influences on the pronounced six synoptic circulation patterns and consequently affecting the NA REHEs. In terms of long-term change, the REHEs over the three subregions show significant increasing trends over 1960–2018 and significant interdecadal increases around the mid-1990s, in which the contribution of each synoptic pattern–related REHE is different.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

In this study, the synoptic atmospheric patterns responsible for regional extreme high-temperature events (REHEs) over northern Asia (NA) are investigated. First, a hybrid regionalization approach is applied to the daily maximum temperature (Tmax), and three subregions of NA can be identified: western NA, central NA, and southeastern NA. To better understand the mechanism for the NA REHE formation, the REHE-related synoptic circulation patterns over each subregion are further categorized into two types. These six synoptic circulation patterns influence the NA REHE occurrence through different radiation and advection processes. Generally, the radiation process dominates the NA REHE occurrence, while the horizontal temperature advection plays a more important role in the synoptic dipole patterns than in the monopole high patterns. The heatwaves associated with the six synoptic patterns can last more than 3.8 days, with a maximum of 2 weeks. From the forecasting perspective, six wave trains are explored as the precursors of these six synoptic circulation patterns, separately. The wave trains originate from the North Atlantic Ocean and Europe with at least a 3-day lead and then propagate eastward to NA, exerting influences on the pronounced six synoptic circulation patterns and consequently affecting the NA REHEs. In terms of long-term change, the REHEs over the three subregions show significant increasing trends over 1960–2018 and significant interdecadal increases around the mid-1990s, in which the contribution of each synoptic pattern–related REHE is different.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn
Save
  • Agel, L., M. Barlow, C. Skinner, F. Colby, and J. Cohen, 2021: Four distinct northeast US heat wave circulation patterns and associated mechanisms, trends, and electric usage. npj Climate Atmos. Sci., 4, 31, https://doi.org/10.1038/s41612-021-00186-7.

    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, https://doi.org/10.1029/2005JD006290.

    • Search Google Scholar
    • Export Citation
  • Arkhangelskaya, S., 2016: The Siberian plague. Accessed 22 March 2022, https://www.rbth.com/longreads/siberian_plague/.

  • Bardin, M. Y., and T. V. Platova, 2019: Long-period variations in extreme temperature statistics in Russia as linked to the changes in large-scale atmospheric circulation and global warming. Russ. Meteor. Hydrol., 44, 791801, https://doi.org/10.3103/S106837391912001X.

    • Search Google Scholar
    • Export Citation
  • Bulygina, O. N., V. N. Razuvaev, N. N. Korshunova, and P. Y. Groisman, 2007: Climate variations and changes in extreme climate events in Russia. Environ. Res. Lett., 2, 045020, https://doi.org/10.1088/1748-9326/2/4/045020.

    • Search Google Scholar
    • Export Citation
  • Caliński, T., and J. Harabasz, 1974: A dendrite method for cluster analysis. Commun. Stat., 3, 127, https://doi.org/10.1080/03610927408827101.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, and A. S. Phillips, 2005: Tropical Atlantic influence on European heat waves. J. Climate, 18, 28052811, https://doi.org/10.1175/JCLI3506.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., W. He, J. Sun, and L. Chen, 2022: Increases of extreme heat–humidity days endanger future populations living in China. Environ. Res. Lett., 17, 064013, https://doi.org/10.1088/1748-9326/ac69fc.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and R. Lu, 2015: Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China. J. Climate, 28, 58305844, https://doi.org/10.1175/JCLI-D-14-00818.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2016: Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China. J. Climate, 29, 69096921, https://doi.org/10.1175/JCLI-D-16-0160.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over northeast Asia in the midsummer of 2018. Atmos. Oceanic Sci. Lett., 12, 238245, https://doi.org/10.1080/16742834.2019.1611170.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 50965103, https://doi.org/10.1002/2016GL072281.

    • Search Google Scholar
    • Export Citation
  • Choi, N., M.-I. Lee, D.-H. Cha, Y.-K. Lim, and K.-M. Kim, 2020: Decadal changes in the interannual variability of heat waves in East Asia caused by atmospheric teleconnection changes. J. Climate, 33, 15051522, https://doi.org/10.1175/JCLI-D-19-0222.1.

    • Search Google Scholar
    • Export Citation
  • Ciavarella, A., and Coauthors, 2021: Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change, 166, 9, https://doi.org/10.1007/s10584-021-03052-w.

    • Search Google Scholar
    • Export Citation
  • Degefie, D. T., E. Fleischer, O. Klemm, A. V. Soromotin, O. V. Soromotina, A. V. Tolstikov, and N. V. Abramov, 2014: Climate extremes in south western Siberia: Past and future. Stochastic Environ. Res. Risk Assess., 28, 21612173, https://doi.org/10.1007/s00477-014-0872-9.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res., 112, D15103, https://doi.org/10.1029/2007JD008510.

    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, M. Ting, P. Zhao, and Z. Wang, 2019: Dominant modes of China summer heat waves driven by global sea surface temperature and atmospheric internal variability. J. Climate, 32, 37613775, https://doi.org/10.1175/JCLI-D-18-0256.1.

    • Search Google Scholar
    • Export Citation
  • Deng, K., X. Jiang, C. Hu, and D. Chen, 2020: More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett., 15, 074011, https://doi.org/10.1088/1748-9326/ab8335.

    • Search Google Scholar
    • Export Citation
  • Ding, T., H. Gao, and W. Li, 2018: Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Climatol., 38, 35793594, https://doi.org/10.1002/joc.5518.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, W. Chen, X. Liu, R. Lu, and Y. Sun, 2016: Abrupt summer warming and changes in temperature extremes over northeast Asia since the mid-1990s: Drivers and physical processes. Adv. Atmos. Sci., 33, 10051023, https://doi.org/10.1007/s00376-016-5247-3.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Search Google Scholar
    • Export Citation
  • Engdaw, M. M., A. P. Ballinger, G. C. Hegerl, and A. K. Steiner, 2022: Changes in temperature and heat waves over Africa using observational and reanalysis data sets. Int. J. Climatol., 42, 11651180, https://doi.org/10.1002/joc.7295.

    • Search Google Scholar
    • Export Citation
  • Erdenebat, E., and T. Sato, 2016: Recent increase in heat wave frequency around Mongolia: Role of atmospheric forcing and possible influence of soil moisture deficit. Atmos. Sci. Lett., 17, 135140, https://doi.org/10.1002/asl.616.

    • Search Google Scholar
    • Export Citation
  • Ezhova, E., and Coauthors, 2021: Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia. EcoHealth, 18, 217228, https://doi.org/10.1007/s10393-021-01549-5.

    • Search Google Scholar
    • Export Citation
  • Fang, B., and M. Lu, 2020: Heatwave and blocking in the northeastern Asia: Occurrence, variability, and association. J. Geophys. Res. Atmos., 125, e2019JD031627, https://doi.org/10.1029/2019JD031627.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398403, https://doi.org/10.1038/ngeo866.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, D. Lüthi, and C. Schär, 2007a: Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys. Res. Lett., 34, L06707, https://doi.org/10.1029/2006GL029068.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007b: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Gao, M., J. Yang, B. Wang, S. Zhou, D. Gong, and S.-J. Kim, 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 44214437, https://doi.org/10.1007/s00382-017-3526-z.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Y., and Coauthors, 2013: Climate changes in Siberia. Regional Environmental Changes in Siberia and their Global Consequences, P. Ya. Groisman and G. Gutman, Eds., Springer Environmental Science and Engineering Book Series, Springer, 57–109.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hong, H., J. Sun, and H. Wang, 2020: Interdecadal variation in the frequency of extreme hot events in northeast China and the possible mechanism. Atmos. Res., 244, 105065, https://doi.org/10.1016/j.atmosres.2020.105065.

    • Search Google Scholar
    • Export Citation
  • Hong, H., J. Sun, and H. Wang, 2022: Variations in summer extreme high-temperature events over northern Asia and the possible mechanisms. J. Climate, 35, 335357, https://doi.org/10.1175/JCLI-D-21-0043.1.

    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Search Google Scholar
    • Export Citation
  • Hu, L., J.-J. Luo, G. Huang, and M. C. Wheeler, 2019: Synoptic features responsible for heat waves in central Africa, a region with strong multidecadal trends. J. Climate, 32, 79517970, https://doi.org/10.1175/JCLI-D-18-0807.1.

    • Search Google Scholar
    • Export Citation
  • Hueffer, K., D. Drown, V. Romanovsky, and T. Hennessy, 2020: Factors contributing to anthrax outbreaks in the circumpolar north. EcoHealth, 17, 174180, https://doi.org/10.1007/s10393-020-01474-z.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2007: Dynamical controls on the diurnal cycle of temperature in complex topography. Climate Dyn., 29, 277292, https://doi.org/10.1007/s00382-007-0239-8.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., H. Chen, and Z. Shi, 2022: Anthropogenic influence on extreme temperature changes over the mid–high latitudes of Asia. Int. J. Climatol., 42, 86198631, https://doi.org/10.1002/joc.7753.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-K., B.-K. Moon, M.-K. Kim, J.-Y. Park, and Y.-K. Hyun, 2021: Three distinct atmospheric circulation patterns associated with high temperature extremes in South Korea. Sci. Rep., 11, 12911, https://doi.org/10.1038/s41598-021-92368-9.

    • Search Google Scholar
    • Export Citation
  • Kuglitsch, F. G., A. Toreti, E. Xoplaki, P. M. Della-Marta, C. S. Zerefos, M. Türkeş, and J. Luterbacher, 2010: Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett., 37, L04802, https://doi.org/10.1029/2009GL041841.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 48154830, https://doi.org/10.1002/joc.4671.

    • Search Google Scholar
    • Export Citation
  • Li, C., F. Zwiers, X. Zhang, G. Li, Y. Sun, and M. Wehner, 2021: Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J. Climate, 34, 34413460, https://doi.org/10.1175/JCLI-D-19-1013.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Search Google Scholar
    • Export Citation
  • Li, M., D. Luo, Y. Yao, and L. Zhong, 2020a: Large-scale atmospheric circulation control of summer extreme hot events over China. Int. J. Climatol., 40, 14561476, https://doi.org/10.1002/joc.6279.

    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Yao, I. Simmonds, D. Luo, L. Zhong, and X. Chen, 2020b: Collaborative impact of the NAO and atmospheric blocking on European heatwaves, with a focus on the hot summer of 2018. Environ. Res. Lett., 15, 114003, https://doi.org/10.1088/1748-9326/aba6ad.

    • Search Google Scholar
    • Export Citation
  • Li, R.-X., and J.-Q. Sun, 2018: Interdecadal variability of the large-scale extreme hot event frequency over the middle and lower reaches of the Yangtze River basin and its related atmospheric patterns. Atmos. Oceanic Sci. Lett., 11, 6370, https://doi.org/10.1080/16742834.2017.1335580.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Zhou, H. Mao, and C. Fu, 2019: Decadal variations in the relationship between the western Pacific subtropical high and summer heat waves in East China. J. Climate, 32, 16271640, https://doi.org/10.1175/JCLI-D-18-0093.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Scientific Rep. 1, 52 pp., https://eapsweb.mit.edu/sites/default/files/Empirical_Orthogonal_Functions_1956.pdf.

  • Lu, R.-Y., and R.-D. Chen, 2016: A review of recent studies on extreme heat in China. Atmos. Oceanic Sci. Lett., 9, 114121, https://doi.org/10.1080/16742834.2016.1133071.

    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2017: Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. J. Climate, 30, 703720, https://doi.org/10.1175/JCLI-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2019: Amplifying effect of ENSO on heat waves in China. Climate Dyn., 52, 32773289, https://doi.org/10.1007/s00382-018-4322-0.

    • Search Google Scholar
    • Export Citation
  • Luo, M., and N.-C. Lau, 2020: Summer heat extremes in northern continents linked to developing ENSO events. Environ. Res. Lett., 15, 074042, https://doi.org/10.1088/1748-9326/ab7d07.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and C. Tebaldi, 2004: More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994997, https://doi.org/10.1126/science.1098704.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Y. Shen, 2014: On the relationship of soil moisture and extreme temperatures in East China. Earth Interact., 18, https://doi.org/10.1175/2013EI000551.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Ng, A. Y., M. I. Jordan, and Y. Weiss, 2002: On spectral clustering: Analysis and an algorithm. Proc. 14th Int. Conf. on Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC, Canada, Association for Computing Machinery, 849–856, https://dl.acm.org/doi/10.5555/2980539.2980649.

  • Noh, E., J. Kim, S.-Y. Jun, D.-H. Cha, M.-S. Park, J.-H. Kim, and H.-G. Kim, 2021: The role of the Pacific–Japan pattern in extreme heatwaves over Korea and Japan. Geophys. Res. Lett., 48, e2021GL093990, https://doi.org/10.1029/2021GL093990.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2021: The 2020 Siberian heat wave. Int. J. Climatol., 41, E2341E2346, https://doi.org/10.1002/joc.6850.

    • Search Google Scholar
    • Export Citation
  • Pedregosa, F., and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164–165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., L. V. Alexander, and J. R. Nairn, 2012: Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett., 39, L20714, https://doi.org/10.1029/2012GL053361.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-) daily time scales. Geophys. Res. Lett., 39, L12807, https://doi.org/10.1029/2012GL052261.

    • Search Google Scholar
    • Export Citation
  • Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne, 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Climate Change, 2, 736741, https://doi.org/10.1038/nclimate1536.

    • Search Google Scholar
    • Export Citation
  • Ren, L., T. Zhou, and W. Zhang, 2020: Attribution of the record-breaking heat event over northeast Asia in summer 2018: The role of circulation. Environ. Res. Lett., 15, 054018, https://doi.org/10.1088/1748-9326/ab8032.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Seneviratne, S. I., and M. Hauser, 2020: Regional climate sensitivity of climate extremes in CMIP6 versus CMIP5 multimodel ensembles. Earth’s Future., 8, e2019EF001474, https://doi.org/10.1029/2019EF001474.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Stefanon, M., F. D’Andrea, and P. Drobinski, 2012: Heatwave classification over Europe and the Mediterranean region. Environ. Res. Lett., 7, 014023, https://doi.org/10.1088/1748-9326/7/1/014023.

    • Search Google Scholar
    • Export Citation
  • Sulikowska, A., and A. Wypych, 2020: Summer temperature extremes in Europe: How does the definition affect the results? Theor. Appl. Climatol., 141, 1930, https://doi.org/10.1007/s00704-020-03166-8.

    • Search Google Scholar
    • Export Citation
  • Sun, J.-Q., 2012: Possible impact of the summer North Atlantic Oscillation on extreme hot events in China. Atmos. Oceanic Sci. Lett., 5, 231234, https://doi.org/10.1080/16742834.2012.11446996.

    • Search Google Scholar
    • Export Citation
  • Sun, J.-Q., 2014: Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin. Sci. Bull., 59, 34653470, https://doi.org/10.1007/s11434-014-0425-0.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wang, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Dong, T. Hu, X. Zhang, and P. Stott, 2020: Attribution of the warmest spring of 2018 in northeastern Asia using simulations of a coupled and an atmospheric model. Bull. Amer. Meteor. Soc., 101, S129S134, https://doi.org/10.1175/BAMS-D-19-0264.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., A. Huang, P. Wu, D. Huang, D. Xue, and Y. Wu, 2021: Drivers of summer extreme precipitation events over East China. Geophys. Res. Lett., 48, e2021GL093670, https://doi.org/10.1029/2021GL093670.

    • Search Google Scholar
    • Export Citation
  • Thirumalai, K., P. N. DiNezio, Y. Okumura, and C. Deser, 2017: Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun., 8, 15531, https://doi.org/10.1038/ncomms15531.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, https://doi.org/10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • von Luxburg, U., 2007: A tutorial on spectral clustering. Stat. Comput., 17, 395416, https://doi.org/10.1007/s11222-007-9033-z.

  • Wang, J., and Coauthors, 2021: Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Climate Change, 11, 10841089, https://doi.org/10.1038/s41558-021-01196-2.

    • Search Google Scholar
    • Export Citation
  • Wang, K., Y. Li, Y. Wang, and X. Yang, 2017: On the asymmetry of the urban daily air temperature cycle. J. Geophys. Res. Atmos., 122, 56255635, https://doi.org/10.1002/2017JD026589.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong, 2013: Summer high temperature extremes in southeast China associated with the East Asian jet stream and circumglobal teleconnection. J. Geophys. Res. Atmos., 118, 83068319, https://doi.org/10.1002/jgrd.50633.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, and D. Chen, 2014: Summer high temperature extremes in southeast China: Bonding with the El Niño–Southern Oscillation and East Asian summer monsoon coupled system. J. Climate, 27, 41224138, https://doi.org/10.1175/JCLI-D-13-00545.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Li, X. Wang, and D. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 29232941, https://doi.org/10.1007/s00382-015-2741-8.

    • Search Google Scholar
    • Export Citation
  • WMO, 2017: WMO guidelines on the calculation of climate normals. WMO-1203, 29 pp., https://library.wmo.int/doc_num.php?explnum_id=4166.

  • WMO, 2020: Reported new record temperature of 38°C north of Arctic Circle. WMO, accessed 22 March 2022, https://public.wmo.int/en/media/news/reported-new-record-temperature-of-38°C-north-of-arctic-circle.

  • Wu, B., and J. A. Francis, 2019: Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J. Climate, 32, 11371150, https://doi.org/10.1175/JCLI-D-18-0370.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and J. Zhang, 2015: The relationship between spring soil moisture and summer hot extremes over North China. Adv. Atmos. Sci., 32, 16601668, https://doi.org/10.1007/s00376-015-5003-0.

    • Search Google Scholar
    • Export Citation
  • Xie, W., and B. Zhou, 2023: On the atmospheric background for the occurrence of three heat wave types in East China. Wea. Climate Extremes, 39, 100539, https://doi.org/10.1016/j.wace.2022.100539.

    • Search Google Scholar
    • Export Citation
  • Xu, K., R. Lu, B.-J. Kim, J.-K. Park, J. Mao, J.-Y. Byon, R. Chen, and E.-B. Kim, 2019: Large-scale circulation anomalies associated with extreme heat in South Korea and southern–central Japan. J. Climate, 32, 27472759, https://doi.org/10.1175/JCLI-D-18-0485.1.

    • Search Google Scholar
    • Export Citation
  • Xu, P., and Coauthors, 2021: Amplified waveguide teleconnections along the polar front jet favor summer temperature extremes over northern Eurasia. Geophys. Res. Lett., 48, e2021GL093735, https://doi.org/10.1029/2021GL093735.

    • Search Google Scholar
    • Export Citation
  • Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res. Atmos., 124, 74987511, https://doi.org/10.1029/2018JD030170.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., Q. Shao, and Z. Lin, 2018: Regionalization study of maximum daily temperature based on grid data by an objective hybrid clustering approach. J. Hydrol., 564, 149163, https://doi.org/10.1016/j.jhydrol.2018.07.007.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., Q. Shao, Z. Lin, and I.-S. Kang, 2021: Characteristics analysis and synoptic features of event-based regional heatwaves over China. J. Geophys. Res. Atmos., 126, e2020JD033865, https://doi.org/10.1029/2020JD033865.

    • Search Google Scholar
    • Export Citation
  • Zhai, P., and X. Pan, 2003: Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett., 30, 1923, https://doi.org/10.1029/2003GL018004.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., G. Zeng, C. Li, and X. Yang, 2020: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dyn., 54, 30033020, https://doi.org/10.1007/s00382-020-05155-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and L. Wu, 2011: Land–atmosphere coupling amplifies hot extremes over China. Chin. Sci. Bull., 56, 33283332, https://doi.org/10.1007/s11434-011-4628-3.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., C. Sun, and W. Li, 2018: Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China (in Chinese). Chin. J. Geophys., 61, 91105, https://doi.org/10.6038/cjg2018K0755.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Hegerl, F. W. Zwiers, and J. Kenyon, 2005: Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Climate, 18, 16411651, https://doi.org/10.1175/JCLI3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., and Coauthors, 2019: Climatic characteristics and major meteorological events over China in 2018 (in Chinese). Meteor. Mon., 45, 543552.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and Z. Wu, 2016: Possible impacts of mega–El Niño/Southern Oscillation and Atlantic multidecadal oscillation on Eurasian heatwave frequency variability. Quart. J. Roy. Meteor. Soc., 142, 16471661, https://doi.org/10.1002/qj.2759.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, and H. Wang, 2020a: Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol., 40, 841857, https://doi.org/10.1002/joc.6242.

    • Search Google Scholar
    • Export Citation
  • Zhu, B., B. Sun, H. Li, and H. Wang, 2020b: Interdecadal variations in extreme high–temperature events over southern China in the early 2000s and the influence of the Pacific decadal oscillation. Atmosphere, 11, 829, https://doi.org/10.3390/atmos11080829.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 548 548 60
Full Text Views 314 314 18
PDF Downloads 400 400 22