Cloud and Precipitation in Low-Latitude Extratropical Cyclones Conditionally Sorted on CYGNSS Surface Latent and Sensible Heat Fluxes

Catherine M. Naud aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Catherine M. Naud in
Current site
Google Scholar
PubMed
Close
,
Juan A. Crespo cUniversity of California, Los Angeles, Los Angeles, California
dJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Juan A. Crespo in
Current site
Google Scholar
PubMed
Close
,
Derek J. Posselt dJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Derek J. Posselt in
Current site
Google Scholar
PubMed
Close
, and
James F. Booth eCity College of New York, City University of New York, New York, New York

Search for other papers by James F. Booth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclones are the primary cause of midlatitude winds, precipitation, and clouds. Surface latent and sensible heat fluxes from the ocean impact cyclone intensity, but their role in moisture transport leading to cloud and precipitation is still under investigation. While numerical simulations can help establish such links, evaluating and constraining these simulations require observations. To this end, satellite-based observations of cloud and precipitation in low-latitude extratropical cyclones are examined for four distinct classifications based on the Cyclone Global Navigation Satellite System (CYGNSS) latent and sensible heat fluxes, averaged in the post-cold-frontal or warm-sector areas of the cyclones. Using a cyclone compositing approach, contrasts in cloud and precipitation in strong- versus weak-surface-flux conditions are examined. In the post-cold-frontal region, stronger latent or sensible heat fluxes are associated with lower precipitation rates and higher cloud opacity, indicating more vigorous shallow convection. However, larger sensible heat flux cases display larger cloud fraction, while larger latent heat flux cases exhibit lower cloud fraction, which could indicate differing cloud morphologies. In the comma region of the cyclones, clouds and precipitation depend on both cyclone strength and moisture availability. Consistent with this, larger cloud amount and precipitation are found for strong fluxes in the post-cold-frontal region, and weak or negative sensible heat fluxes, indicative of poleward warm advection, in the warm sector. The strong regional differences in the surface heat flux–cloud and precipitation relationships highlight the need for further investigation into moisture supply and transport in cyclones, while providing guidance for future work.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine M. Naud, cn2140@columbia.edu

Abstract

Extratropical cyclones are the primary cause of midlatitude winds, precipitation, and clouds. Surface latent and sensible heat fluxes from the ocean impact cyclone intensity, but their role in moisture transport leading to cloud and precipitation is still under investigation. While numerical simulations can help establish such links, evaluating and constraining these simulations require observations. To this end, satellite-based observations of cloud and precipitation in low-latitude extratropical cyclones are examined for four distinct classifications based on the Cyclone Global Navigation Satellite System (CYGNSS) latent and sensible heat fluxes, averaged in the post-cold-frontal or warm-sector areas of the cyclones. Using a cyclone compositing approach, contrasts in cloud and precipitation in strong- versus weak-surface-flux conditions are examined. In the post-cold-frontal region, stronger latent or sensible heat fluxes are associated with lower precipitation rates and higher cloud opacity, indicating more vigorous shallow convection. However, larger sensible heat flux cases display larger cloud fraction, while larger latent heat flux cases exhibit lower cloud fraction, which could indicate differing cloud morphologies. In the comma region of the cyclones, clouds and precipitation depend on both cyclone strength and moisture availability. Consistent with this, larger cloud amount and precipitation are found for strong fluxes in the post-cold-frontal region, and weak or negative sensible heat fluxes, indicative of poleward warm advection, in the warm sector. The strong regional differences in the surface heat flux–cloud and precipitation relationships highlight the need for further investigation into moisture supply and transport in cyclones, while providing guidance for future work.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Catherine M. Naud, cn2140@columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 0.4229 MB)
Save
  • Bauer, M., and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, https://doi.org/10.1175/JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, https://doi.org/10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, https://doi.org/10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., C. M. Naud, and J. Jeyaratnam, 2018: Extratropical cyclone precipitation life cycles: A satellite-based analysis. Geophys. Res. Lett., 45, 86478654, https://doi.org/10.1029/2018GL078977.

    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., R. J. Beare, S. E. Belcher, A. R. Brown, and R. S. Plant, 2010: The moist boundary layer under a mid-latitude weather system. Bound.-Layer Meteor., 134, 367386, https://doi.org/10.1007/s10546-009-9452-9.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, https://doi.org/10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bui, H., and T. Spengler, 2021: On the influence of sea surface temperature distributions on the development of extratropical cyclones. J. Atmos. Sci., 78, 11731188, https://doi.org/10.1175/JAS-D-20-0137.1.

    • Search Google Scholar
    • Export Citation
  • Crespo, J. A., D. J. Posselt, and S. Asharaf, 2019: CYGNSS surface heat flux product development. Remote Sens., 11, 2294, https://doi.org/10.3390/rs11192294.

    • Search Google Scholar
    • Export Citation
  • Crespo, J. A., C. M. Naud, and D. J. Posselt, 2021: CYGNSS observations and analysis of low-latitude extratropical cyclones. J. Appl. Meteor. Climatol., 60, 527541, https://doi.org/10.1175/JAMC-D-20-0190.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martinez-Alavarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Search Google Scholar
    • Export Citation
  • Demirdjian, R., J. D. Doyle, P. M. Finocchio, and C. A. Reynolds, 2022: On the influence of surface latent heat fluxes on idealized extratropical cyclones. J. Atmos. Sci., 79, 22292242, https://doi.org/10.1175/JAS-D-22-0035.1.

    • Search Google Scholar
    • Export Citation
  • Edson, J., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., P. Stier, R. G. Grainger, and T. M. Wagner, 2013: The contribution of the strength and structure of extratropical cyclones to observed cloud–aerosol relationships. Atmos. Chem. Phys., 13, 10 68910 701, https://doi.org/10.5194/acp-13-10689-2013.

    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J., Jr., and W. Jiang, 1998: Surface-flux regulation of the coupling between cumulus convection and baroclinic waves. J. Atmos. Sci., 55, 940953, https://doi.org/10.1175/1520-0469(1998)055<0940:SFROTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2016: Global Physical Climatology. 2nd ed. Elsevier, 473 pp.

  • Haualand, K. F., and T. Spengler, 2020: Direct and indirect effects of surface fluxes on moist baroclinic development in an idealized framework. J. Atmos. Sci., 77, 32113225, https://doi.org/10.1175/JAS-D-19-0328.1.

    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 3765, https://doi.org/10.1017/S1350482798000553.

  • Hirata, H., R. Kawamura, M. Nonaka, and K. Tsuboki, 2019: Significant impact of heat supply from the Gulf Stream on a “Superbomb” cyclone in January 2018. Geophys. Res. Lett., 46, 77187725, https://doi.org/10.1029/2019GL082995.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1992: An Introduction to Dynamic Meteorology. Academic Press, 511 pp.

  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 570 pp.

  • Huffman, G. J., and Coauthors, 2017: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc., version 4.6, 28 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf.

  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, and E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 half hourly 0.1 degree × 0.1 degree v06. Goddard Earth Sciences Data and Information Services Center, accessed 10 January 2022, https://doi.org/10.5067/GPM/IMERG/3B-HH/06.

  • Kuo, Y.-H., S. Low-Nam, and R. J. Reed, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., J. Yang, Y. Yang, and W. Li, 2022: Exploring CYGNSS mission for surface heat flux estimates and analysis over tropical oceans. Front. Mar. Sci., 9, 1001491, https://doi.org/10.3389/fmars.2022.1001491.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 1998: Influence of surface sensible heat flux on incipient marine cyclogenesis. J. Atmos. Sci., 55, 820834, https://doi.org/10.1175/1520-0469(1998)055<0820:IOSSHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., and B. M. Kahn, 2015: Thermodynamic phase and ice cloud properties in Northern Hemisphere winter extratropical cyclones observed by Aqua AIRS. J. Appl. Meteor. Climatol., 54, 22832303, https://doi.org/10.1175/JAMC-D-15-0045.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, and M. Bauer, 2006: Observational constraints on the cloud thermodynamic phase in midlatitude storms. J. Climate, 19, 52735288, https://doi.org/10.1175/JCLI3919.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., A. D. Del Genio, M. Bauer, and W. Kovari, 2010: Cloud vertical distribution across warm and cold fronts in CloudSat–CALIPSO data and a general circulation model. J. Climate, 23, 33973415, https://doi.org/10.1175/2010JCLI3282.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, D. J. Posselt, and S. C. van den Heever, 2013: Multiple satellite observations of cloud cover in extratropical cyclones. J. Geophys. Res. Atmos., 118, 99829996, https://doi.org/10.1002/jgrd.50718.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, M. Lebsock, and M. Grecu, 2018: Observational constraint for precipitation in extratropical cyclones: Sensitivity to data sources. J. Appl. Meteor. Climatol., 57, 9911009, https://doi.org/10.1175/JAMC-D-17-0289.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. Jeyaratnam, J. F. Booth, M. Zhao, and A. Gettelman, 2020: Evaluation of modeled precipitation in oceanic extratropical cyclones using IMERG. J. Climate, 33, 95113, https://doi.org/10.1175/JCLI-D-19-0369.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. A. Crespo, and D. J. Posselt, 2021: On the relationship between CYGNSS surface heat fluxes and the life cyclone of low-latitude ocean extratropical cyclones. J. Appl. Meteor. Climatol., 60, 15751590, https://doi.org/10.1175/JAMC-D-21-0074.1.

    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and T. J. Greenwald, 2008: Comparison of WRF model-simulated and MODIS-derived cloud data. Mon. Wea. Rev., 136, 19571970, https://doi.org/10.1175/2007MWR2293.1.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., F. Aemisegger, and H. Wernli, 2021: Sources and transport pathways of precipitating waters in cold season deep north Atlantic cyclones. J. Atmos. Sci., 78, 33493368, https://doi.org/10.1175/JAS-D-21-0105.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., P. Hubanks, K. Meyer, and M. D. King, 2015: MODIS atmosphere L3 monthly product (08_L3). NASA Goddard Space Flight Center, accessed 20 March 2022, https://doi.org/10.5067/MODIS/MYD08_M3.006.

  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, and D. Waliser, 2019: In-orbit performance of the constellation of CYGNSS hurricane satellites. Bull. Amer. Meteor. Soc., 100, 20092023, https://doi.org/10.1175/BAMS-D-18-0337.1.

    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., Y. Zhang, and W. R. Rossow, 2000: Cloud and radiation variations associated with northern midlatitude low and high sea level pressure regimes. J. Climate, 13, 312327, https://doi.org/10.1175/1520-0442(2000)013<0312:CARVAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tsopouridis, L., C. Spensberger, and T. Spengler, 2021: Characteristics of cyclones following different pathways in the Gulf Stream region. Quart J. Roy. Meteor. Soc., 147, 392407, https://doi.org/10.1002/qj.3924.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 443 8
Full Text Views 170 170 10
PDF Downloads 179 179 11