ENSO Modoki Impacts on the Interannual Variations of Spring Antarctic Stratospheric Ozone

Yingli Niu aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Yingli Niu in
Current site
Google Scholar
PubMed
Close
,
Fei Xie aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Fei Xie in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2891-3883
, and
Shaohua Wu aFaculty of Geographical Science, School of Systems Science, Beijing Normal University, Beijing, China

Search for other papers by Shaohua Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Using observation and reanalysis data, we investigated the effect of the sea surface temperature anomalies associated with ENSO Modoki from September to October on interannual variations in Antarctic stratospheric ozone from October to November. It was found that the planetary wave anomalies generated by ENSO Modoki in the tropical troposphere propagate to the southern mid- and then high-latitude stratosphere. The planetary wave anomalies have a profound impact on the polar vortex, subsequently affecting the interannual variations in Antarctic stratospheric ozone. Further analysis revealed that the responses of the polar vortex and ozone to ENSO Modoki are mainly modulated by the wave-1 and wave-3 components, and the effect of wave 2 is opposite and offset by those of wave 1 and wave 3. The contribution of the residual waves (after removing waves 1, 2, 3, and the remaining waves) are relatively small. Furthermore, we evaluated the performance of CMIP6 models in simulating the impacts of ENSO Modoki on the southern stratospheric polar vortex and ozone. We selected seven models that include stratospheric processes and stratospheric chemical ozone. We found that all are capable of distinguishing between eastern Pacific ENSO and ENSO Modoki events. However, only GISS-E2-1-G and MPI-ESM-1-2-HAM can simulate the patterns of ozone, circulation, and temperature in the Southern Hemisphere in a manner that closely resembles the reanalysis results. Further analysis indicated that these two models can better simulate the propagation of planetary wave activities in the troposphere forced by ENSO Modoki, whereas the other models produce significantly different results to those obtained from observations.

Significance Statement

This study found a significant connection between ENSO Modoki and the interannual variability of Antarctic stratospheric ozone in austral spring and investigated the underlying physical mechanisms in detail. In addition, the performances of CMIP6 models in simulating the impact of ENSO Modoki on the southern stratospheric polar vortex and ozone were evaluated. This study not only helps to further understand the characteristics of past Antarctic ozone changes but also helps developers improve the performance of models in simulating Antarctic stratospheric changes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fei Xie, xiefei@bnu.edu.cn

Abstract

Using observation and reanalysis data, we investigated the effect of the sea surface temperature anomalies associated with ENSO Modoki from September to October on interannual variations in Antarctic stratospheric ozone from October to November. It was found that the planetary wave anomalies generated by ENSO Modoki in the tropical troposphere propagate to the southern mid- and then high-latitude stratosphere. The planetary wave anomalies have a profound impact on the polar vortex, subsequently affecting the interannual variations in Antarctic stratospheric ozone. Further analysis revealed that the responses of the polar vortex and ozone to ENSO Modoki are mainly modulated by the wave-1 and wave-3 components, and the effect of wave 2 is opposite and offset by those of wave 1 and wave 3. The contribution of the residual waves (after removing waves 1, 2, 3, and the remaining waves) are relatively small. Furthermore, we evaluated the performance of CMIP6 models in simulating the impacts of ENSO Modoki on the southern stratospheric polar vortex and ozone. We selected seven models that include stratospheric processes and stratospheric chemical ozone. We found that all are capable of distinguishing between eastern Pacific ENSO and ENSO Modoki events. However, only GISS-E2-1-G and MPI-ESM-1-2-HAM can simulate the patterns of ozone, circulation, and temperature in the Southern Hemisphere in a manner that closely resembles the reanalysis results. Further analysis indicated that these two models can better simulate the propagation of planetary wave activities in the troposphere forced by ENSO Modoki, whereas the other models produce significantly different results to those obtained from observations.

Significance Statement

This study found a significant connection between ENSO Modoki and the interannual variability of Antarctic stratospheric ozone in austral spring and investigated the underlying physical mechanisms in detail. In addition, the performances of CMIP6 models in simulating the impact of ENSO Modoki on the southern stratospheric polar vortex and ozone were evaluated. This study not only helps to further understand the characteristics of past Antarctic ozone changes but also helps developers improve the performance of models in simulating Antarctic stratospheric changes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fei Xie, xiefei@bnu.edu.cn
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., C.-Y. Tam, and W.-J. Lee, 2009: ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys. Res. Lett., 36, L12705, https://doi.org/10.1029/2009GL038847.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Banerjee, A., J. C. Fyfe, L. M. Polvani, D. Waugh, and K.-L. Chang, 2020: A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature, 579, 544548, https://doi.org/10.1038/s41586-020-2120-4.

    • Search Google Scholar
    • Export Citation
  • Brönnimann, S., M. Schraner, B. Müller, A. Fischer, D. Brunner, E. Rozanov, and T. Egorova, 2006: The 1986–1989 ENSO cycle in a chemical climate model. Atmos. Chem. Phys., 6, 46694685, https://doi.org/10.5194/acp-6-4669-2006.

    • Search Google Scholar
    • Export Citation
  • Butchart, N., A. A. Scaife, J. Austin, S. H. E. Hare, and J. R. Knight, 2003: Quasi-biennial oscillation in ozone in a coupled chemistry-climate model. J. Geophys. Res., 108, 4486, https://doi.org/10.1029/2002JD003004.

    • Search Google Scholar
    • Export Citation
  • Byrne, N. J., and T. G. Shepherd, 2018: Seasonal persistence of circulation anomalies in the Southern Hemisphere stratosphere and its implications for the troposphere. J. Climate, 31, 34673483, https://doi.org/10.1175/JCLI-D-17-0557.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, N. J., T. G. Shepherd, and I. Polichtchouk, 2019: Subseasonal-to-seasonal predictability of the Southern Hemisphere eddy-driven jet during austral spring and early summer. J. Geophys. Res. Atmos., 124, 68416855, https://doi.org/10.1029/2018JD030173.

    • Search Google Scholar
    • Export Citation
  • Cagnazzo, C., and Coauthors, 2009: Northern winter stratospheric temperature and ozone responses to ENSO inferred from an ensemble of chemistry climate models. Atmos. Chem. Phys., 9, 89358948, https://doi.org/10.5194/acp-9-8935-2009.

    • Search Google Scholar
    • Export Citation
  • Calvo, N., M. A. Giorgetta, R. Garcia-Herrera, and E. Manzini, 2009: Correction to “Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations.” J. Geophys. Res., 114, D20117, https://doi.org/10.1029/2009JD013257.

    • Search Google Scholar
    • Export Citation
  • Chen, W., M. Takahashi, and H.-F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108, 4797, https://doi.org/10.1029/2003JD003834.

    • Search Google Scholar
    • Export Citation
  • Chipperfield, M. P., S. S. Dhomse, W. Feng, R. L. McKenzie, G. J. M. Velders, and J. A. Pyle, 2015: Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun., 6, 7233, https://doi.org/10.1038/ncomms8233.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Search Google Scholar
    • Export Citation
  • Douglass, A. R., R. B. Rood, and R. S. Stolarski, 1985: Interpretation of ozone temperature correlations: 2. Analysis of SBUV ozone data. J. Geophys. Res., 90, 10 69310 708, https://doi.org/10.1029/JD090iD06p10693.

    • Search Google Scholar
    • Export Citation
  • Evtushevsky, O. M., V. O. Kravchenko, L. L. Hood, and G. P. Milinevsky, 2015: Teleconnection between the central tropical Pacific and the Antarctic stratosphere: Spatial patterns and time lags. Climate Dyn., 44, 18411855, https://doi.org/10.1007/s00382-014-2375-2.

    • Search Google Scholar
    • Export Citation
  • Evtushevsky, O. M., A. V. Grytsai, and G. P. Milinevsky, 2019: Decadal changes in the central tropical Pacific teleconnection to the Southern Hemisphere extratropics. Climate Dyn., 52, 40274055, https://doi.org/10.1007/s00382-018-4354-5.

    • Search Google Scholar
    • Export Citation
  • Evtushevsky, O. M., A. R. Klekociuk, V. Kravchenko, G. Milinevsky, and A. Grytsai, 2020: The influence of large amplitude planetary waves on the Antarctic ozone hole of austral spring 2017. J. South. Hemisphere Earth Syst. Sci., 69, 5764, https://doi.org/10.1071/ES19022.

    • Search Google Scholar
    • Export Citation
  • Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207210, https://doi.org/10.1038/315207a0.

    • Search Google Scholar
    • Export Citation
  • Fernández, N. C., R. García Herrera, D. G. Puyol, E. H. Martín, R. R. García, L. G. Presa, and P. R. Rodríguez, 2004: Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Climate, 17, 39343946, https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the southern annular mode. J. Climate, 19, 979997, https://doi.org/10.1175/JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., D. H. Bromwich, and K. M. Hines, 2011: Erratum to: Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dyn., 37, 21272128, https://doi.org/10.1007/s00382-011-1201-3.

    • Search Google Scholar
    • Export Citation
  • Forster, P. M. de F., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 84110 855, https://doi.org/10.1029/96JD03510.

    • Search Google Scholar
    • Export Citation
  • Free, M., and D. J. Seidel, 2009: Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res., 114, D23108, https://doi.org/10.1029/2009JD012420.

    • Search Google Scholar
    • Export Citation
  • Freund, M. B., J. R. Brown, B. J. Henley, D. J. Karoly, and J. N. Brown, 2020: Warming patterns affect El Niño diversity in CMIP5 and CMIP6 models. J. Climate, 33, 82378260, https://doi.org/10.1175/JCLI-D-19-0890.1.

    • Search Google Scholar
    • Export Citation
  • Fusco, A. C., and M. L. Salby, 1999: Interannual variations of total ozone and their relationship to variations of planetary wave activity. J. Climate, 12, 16191629, https://doi.org/10.1175/1520-0442(1999)012<1619:IVOTOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res., 111, D06101, https://doi.org/10.1029/2005JD006061.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, https://doi.org/10.1029/2008JD009920.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, D. W. Waugh, and A. H. Butler, 2013: Are the teleconnections of central Pacific and eastern Pacific El Niño distinct in boreal wintertime? Climate Dyn., 41, 18351852, https://doi.org/10.1007/s00382-012-1570-2.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., M. M. Hurwitz, and L. D. Oman, 2015: Effect of recent sea surface temperature trends on the Arctic stratospheric vortex. J. Geophys. Res. Atmos., 120, 54045416, https://doi.org/10.1002/2015JD023284.

    • Search Google Scholar
    • Export Citation
  • Graf, H.-F., and K. Walter, 2005: Polar vortex controls coupling of North Atlantic Ocean and atmosphere. Geophys. Res. Lett., 32, L01704, https://doi.org/10.1029/2004GL020664.

    • Search Google Scholar
    • Export Citation
  • Grassi, B., G. Redaelli, and G. Visconti, 2008: Tropical SST preconditioning of the SH polar vortex during winter 2002. J. Climate, 21, 52955303, https://doi.org/10.1175/2008JCLI2136.1.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., and J. A. Pyle, 1989: A two-dimensional model of the quasi-biennial oscillation of ozone. J. Atmos., 46, 203220, https://doi.org/10.1175/1520-0469(1989)046<0203:ATDMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1981: Some aspects of the coupling between radiation, chemistry, and dynamics in the stratosphere. J. Geophys. Res., 86, 96319640, https://doi.org/10.1029/JC086iC10p09631.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and M. J. Rogal, 2010: Influence of tropical convection on the Southern Hemisphere ozone maximum during the winter to spring transition. J. Geophys. Res., 115, D14118, https://doi.org/10.1029/2009JD012883.

    • Search Google Scholar
    • Export Citation
  • Hood, L. L., B. E. Soukharev, and J. P. McCormack, 2010: Decadal variability of the tropical stratosphere: Secondary influence of the El Niño–Southern Oscillation. J. Geophys. Res., 115, D11113, https://doi.org/10.1029/2009JD012291.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and L. Pan, 2009: Arctic stratospheric winter warming forced by observed SSTs. Geophys. Res. Lett., 36, L11707, https://doi.org/10.1029/2009GL037832.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., P. A. Newman, L. D. Oman, and A. M. Molod, 2011a: Response of the Antarctic stratosphere to two types of El Niño events. J. Atmos., 68, 812822, https://doi.org/10.1175/2011JAS3606.1.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., I.-S. Song, L. D. Oman, P. A. Newman, A. M. Molod, S. M. Frith, and J. E. Nielsen, 2011b: Response of the Antarctic stratosphere to warm pool El Niño events in the GEOS CCM. Atmos. Chem. Phys., 11, 96599669, https://doi.org/10.5194/acp-11-9659-2011.

    • Search Google Scholar
    • Export Citation
  • Hurwitz, M. M., N. Calvo, C. I. Garfinkel, A. H. Butler, S. Ineson, C. Cagnazzo, E. Manzini, and C. Peña-Ortiz, 2014: Extra-tropical atmospheric response to ENSO in the CMIP5 models. Climate Dyn., 43, 33673376, https://doi.org/10.1007/s00382-014-2110-z.

    • Search Google Scholar
    • Export Citation
  • Ineson, S., and A. A. Scaife, 2009: The role of the stratosphere in the European climate response to El Niño. Nat. Geosci., 2, 3236, https://doi.org/10.1038/ngeo381.

    • Search Google Scholar
    • Export Citation
  • Isotta, F., O. Martius, M. Sprenger, and C. Schwierz, 2008: Long-term trends of synoptic-scale breaking Rossby waves in the Northern Hemisphere between 1958 and 2001. Int. J. Climatol., 28, 15511562, https://doi.org/10.1002/joc.1647.

    • Search Google Scholar
    • Export Citation
  • Ji, Q., X. Zhu, Z. Sheng, and T. Tian, 2022: Spectral analysis of gravity waves in the Martian thermosphere during low solar activity based on MAVEN/NGIMS observations. Astrophys. J., 938, 97, https://doi.org/10.3847/1538-4357/ac8d07.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Li, and G. Huang, 2020: Emergent constraint on the frequency of central Pacific El Niño under global warming by the equatorial Pacific cold tongue bias in CMIP5/6 models. Geophys. Res. Lett., 47, e2020GL089519, https://doi.org/10.1029/2020GL089519.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Yu., J. Perlwitz, and E. Manzini, 2014: A model study of tropospheric impacts of the Arctic ozone depletion 2011. J. Geophys. Res. Atmos., 119, 79998014, https://doi.org/10.1002/2013JD021350.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., 1997: Principal modes of the total ozone on the Southern Oscillation timescale and related temperature variations. J. Geophys. Res., 102, 25 79725 806, https://doi.org/10.1029/97JD02362.

    • Search Google Scholar
    • Export Citation
  • Kerr, J. B., and C. T. McElroy, 1993: Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262, 10321034, https://doi.org/10.1126/science.262.5136.1032.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Li, X., E. P. Gerber, D. M. Holland, and C. Yoo, 2015: A Rossby wave bridge from the tropical Atlantic to West Antarctica. J. Climate, 28, 22562273, https://doi.org/10.1175/JCLI-D-14-00450.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J., and T. Qian, 2019: Impacts of the ENSO lifecycle on stratospheric ozone and temperature. Geophys. Res. Lett., 46, 10 64610 658, https://doi.org/10.1029/2019GL083697.

    • Search Google Scholar
    • Export Citation
  • Lin, P., Q. Fu, and D. L. Hartmann, 2012: Impact of tropical SST on stratospheric planetary waves in the Southern Hemisphere. J. Climate, 25, 50305046, https://doi.org/10.1175/JCLI-D-11-00378.1.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., L. Froidevaux, M. L. Santee, R. W. Zurek, and J. W. Waters, 1997: MLS observation of Arctic ozone loss in 1996–97. Geophys. Res. Lett., 24, 26972700, https://doi.org/10.1029/97GL52827.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., M. A. Giorgetta, M. Esch, L. Kornblueh, and E. Roeckner, 2006: The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Climate, 19, 38633881, https://doi.org/10.1175/JCLI3826.1.

    • Search Google Scholar
    • Export Citation
  • McElroy, M. B., R. J. Salawitch, S. C. Wofsy, and J. A. Logan, 1986: Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature, 321, 759762, https://doi.org/10.1038/321759a0.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and H. H. Hendon, 2018: Understanding Rossby wave trains forced by the Indian Ocean dipole. Climate Dyn., 50, 27832798, https://doi.org/10.1007/s00382-017-3771-1.

    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and M. J. Molina, 1987: Production of chlorine oxide (Cl2O2) from the self-reaction of the chlorine oxide (ClO) radical. J. Phys. Chem., 91, 433436, https://doi.org/10.1021/j100286a035.

    • Search Google Scholar
    • Export Citation
  • Nagashima, T., M. Takahashi, and F. Hasebe, 1998: The first simulation of an ozone QBO in a general circulation model. Geophys. Res. Lett., 25, 31313134, https://doi.org/10.1029/98GL02213.

    • Search Google Scholar
    • Export Citation
  • Oman, L. D., A. R. Douglass, J. R. Ziemke, J. M. Rodriguez, D. W. Waugh, and J. E. Nielsen, 2013: The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J. Geophys. Res. Atmos., 118, 965976, https://doi.org/10.1029/2012JD018546.

    • Search Google Scholar
    • Export Citation
  • Poole, L. R., and M. P. McCormick, 1988: Polar stratospheric clouds and the Antarctic ozone hole. J. Geophys. Res., 93, 84238430, https://doi.org/10.1029/JD093iD07p08423.

    • Search Google Scholar
    • Export Citation
  • Proffitt, M. H., and Coauthors, 1989: A chemical definition of the boundary of the Antarctic ozone hole. J. Geophys. Res., 94, 11 43711 448, https://doi.org/10.1029/JD094iD09p11437.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., 1988: The seasonal evolution of planetary waves in the Southern Hemisphere stratosphere and troposphere. Quart. J. Roy. Meteor. Soc., 114, 13851409, https://doi.org/10.1002/qj.49711448403.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and J. B. Cobb, 1994: Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res., 99, 54335447, https://doi.org/10.1029/93JD03454.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53, 25462559, https://doi.org/10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, N. Calvo, and D. Marsh, 2009: ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822, https://doi.org/10.1029/2009GL039343.

    • Search Google Scholar
    • Export Citation
  • Rao, J., C. I. Garfinkel, and I. P. White, 2020: Impact of quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 models. J. Climate, 33, 47874813, https://doi.org/10.1175/JCLI-D-19-0663.1.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., J. Kim, E. Manzini, and J. Kröger, 2012: A stratospheric connection to Atlantic climate variability. Nat. Geosci., 5, 783787, https://doi.org/10.1038/ngeo1586.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, https://doi.org/10.1029/2010GL046031.

    • Search Google Scholar
    • Export Citation
  • Shiotani, M., 1992: Annual, quasi-biennial, and El Niño-Southern Oscillation (ENSO) time-scale variations in equatorial total ozone. J. Geophys. Res., 97, 76257633, https://doi.org/10.1029/92JD00530.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, 1986: On the depletion of Antarctic ozone. Nature, 321, 755758, https://doi.org/10.1038/321755a0.

    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2008: The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489, https://doi.org/10.1126/science.1155939.

    • Search Google Scholar
    • Export Citation
  • Stone, K. A., S. Solomon, D. E. Kinnison, and M. J. Mills, 2021: On recent large Antarctic ozone holes and ozone recovery metrics. Geophys. Res. Lett., 48, e2021GL095232, https://doi.org/10.1029/2021GL095232.

    • Search Google Scholar
    • Export Citation
  • Stone, K. A., S. Solomon, D. W. J. Thompson, D. E. Kinnison, and J. C. Fyfe, 2022: On the Southern Hemisphere stratospheric response to ENSO and its impacts on tropospheric circulation. J. Climate, 35, 19631981, https://doi.org/10.1175/JCLI-D-21-0250.1.

    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332, https://doi.org/10.1175/JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Tegtmeier, S., V. E. Fioletov, and T. G. Shepherd, 2010: A global picture of the seasonal persistence of stratospheric ozone anomalies. J. Geophys. Res., 115, D18119, https://doi.org/10.1029/2009JD013011.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Tilmes, S., R. Müller, J.-U. Grooß, and J. M. Russell III, 2004: Ozone loss and chlorine activation in the Arctic winters 1991-2003 derived with the tracer-tracer correlations. Atmos. Chem. Phys., 4, 21812213, https://doi.org/10.5194/acp-4-2181-2004.

    • Search Google Scholar
    • Export Citation
  • Turner, J., 2004: The El Niño–Southern Oscillation and Antarctica. Int. J. Climatol., 24, 131, https://doi.org/10.1002/joc.965.

  • Waibel, A. E., and Coauthors, 1999: Arctic ozone loss due to denitrification. Science, 283, 20642069, https://doi.org/10.1126/science.283.5410.2064.

    • Search Google Scholar
    • Export Citation
  • Weber, M., S. Dhomse, F. Wittrock, A. Richter, B.-M. Sinnhuber, and J. P. Burrows, 2003: Dynamical control of NH and SH winter/spring total ozone from GOME observations in 1995–2002. Geophys. Res. Lett., 30, 1583, https://doi.org/10.1029/2002GL016799.

    • Search Google Scholar
    • Export Citation
  • Wei, K., W. Chen, and R. Huang, 2007: Association of tropical Pacific sea surface temperatures with the stratospheric Holton-Tan oscillation in the Northern Hemisphere winter. Geophys. Res. Lett., 34, L16814, https://doi.org/10.1029/2007GL030478.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12, 52595273, https://doi.org/10.5194/acp-12-5259-2012.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, J. Zhang, and J. Shu, 2014: The impacts of two types of El Niño on global ozone variations in the last three decades. Adv. Atmos. Sci., 31, 11131126, https://doi.org/10.1007/s00376-013-3166-0.

    • Search Google Scholar
    • Export Citation
  • Xie, F., J. Li, W. Tian, Q. Fu, F. Jin, Y. Hu, J. Zhang, and W. Wang, 2016: A connection from Arctic stratospheric ozone to El Niño-Southern Oscillation. Environ. Res. Lett., 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.

    • Search Google Scholar
    • Export Citation
  • Xie, F., X. Zhou, J. Li, C. Sun, J. Feng, and X. Ma, 2018: The key role of background sea surface temperature over the cold tongue in asymmetric responses of the Arctic stratosphere to El Niño–Southern Oscillation. Environ. Res. Lett., 13, 114007, https://doi.org/10.1088/1748-9326/aae79b.

    • Search Google Scholar
    • Export Citation
  • Yang, C., T. Li, X. Dou, and X. Xue, 2015: Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. J. Geophys. Res. Atmos., 120, 11 43811 450, https://doi.org/10.1002/2015JD023486.

    • Search Google Scholar
    • Export Citation
  • Yang, C., T. Li, X. Xue, S.-Y. Gu, C. Yu, and X. Dou, 2019: Response of the northern stratosphere to the Madden-Julian oscillation during boreal winter. J. Geophys. Res. Atmos., 124, 53145331, https://doi.org/10.1029/2018JD029883.

    • Search Google Scholar
    • Export Citation
  • Zerefos, C. S., A. F. Bais, I. C. Ziomas, and R. D. Bojkov, 1992: On the relative importance of quasi-biennial oscillation and El Nino/Southern Oscillation in the revised Dobson total ozone records. J. Geophys. Res., 97, 10 13510 144, https://doi.org/10.1029/92JD00508.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2023: Observation based climatology Martian atmospheric waves perturbation datasets. Sci. Data, 10, 4, https://doi.org/10.1038/s41597-022-01909-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, Z. Wang, F. Xie, and F. Wang, 2015: The influence of ENSO on northern midlatitude ozone during the winter to spring transition. J. Climate, 28, 47744793, https://doi.org/10.1175/JCLI-D-14-00615.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., H. Zheng, M. Xu, Q. Yin, S. Zhao, W. Tian, and Z. Yang, 2022: Impacts of stratospheric polar vortex changes on wintertime precipitation over the Northern Hemisphere. Climate Dyn., 58, 31553171, https://doi.org/10.1007/s00382-021-06088-x; Corrigendum, 58, 3173, https://doi.org/10.1007/s00382-022-06167-7.

    • Search Google Scholar
    • Export Citation
  • Zubiaurre, I., and N. Calvo, 2012: The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res., 117, D04104, https://doi.org/10.1029/2011JD016690.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 394 394 11
Full Text Views 143 143 1
PDF Downloads 188 188 1