Seasonal Tropical–Extratropical Teleconnections Originating from Tropical Rainfall Modes Independent of the Niño-3.4 Index in Northern Winters

Peitao Peng aNOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Peitao Peng in
Current site
Google Scholar
PubMed
Close
,
Wanqiu Wang aNOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Wanqiu Wang in
Current site
Google Scholar
PubMed
Close
, and
Arun Kumar aNOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Arun Kumar in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study, based on an analysis with observational and reanalysis data, highlights seasonal tropical–extratropical atmospheric teleconnections originating from tropical rainfall modes unrelated to the Niño-3.4 index for northern winters. The mode decomposition for tropical rainfall is done by first removing the Niño-3.4 index–related variability from the tropical rainfall and then applying rotated empirical orthogonal function (REOF) analysis to the residual. The corresponding teleconnection patterns are obtained by regressing global atmospheric fields against the time series of the rainfall modes. Analyses of the tropical heating–atmospheric circulation relationship indicate that the circulation anomalies corresponding to the rainfall modes are forced responses to the corresponding rainfall mode. The teleconnection patterns reveal some new features and show that some intrinsic midlatitude patterns can be triggered by tropical forcing with different rainfall patterns. Results from this study are relevant to seasonal climate attribution and prediction analyses and climate model evaluation. As an illustration, the teleconnections from the rainfall modes, together with that related to the Niño-3.4 index and linear trend, are applied to the attribution analyses for the global circulation anomalies of 2019/20 winter and the California dry condition during the strong El Niño winter of 2015/16. The overall impact of these modes in the period of 1980–2021 is also discussed.

Significance Statement

This study highlights the seasonal tropical–extratropical atmospheric teleconnections independent of the Niño-3.4 index using tropical rainfall modes for northern winters. The reason for using rainfall rather than SST in the mode decomposition is that rainfall represents vertically integrated latent heat, which is the direct forcing of the tropical atmosphere, while SST may have no definite relationship with rainfall in the Indo-Pacific warm pool region. The results of this study are applicable to the analysis of climate attribution and prediction and climate model evaluation, and further, may also have the potential to help improve seasonal climate forecasts.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peitao Peng, Peitao.Peng@noaa.gov

Abstract

This study, based on an analysis with observational and reanalysis data, highlights seasonal tropical–extratropical atmospheric teleconnections originating from tropical rainfall modes unrelated to the Niño-3.4 index for northern winters. The mode decomposition for tropical rainfall is done by first removing the Niño-3.4 index–related variability from the tropical rainfall and then applying rotated empirical orthogonal function (REOF) analysis to the residual. The corresponding teleconnection patterns are obtained by regressing global atmospheric fields against the time series of the rainfall modes. Analyses of the tropical heating–atmospheric circulation relationship indicate that the circulation anomalies corresponding to the rainfall modes are forced responses to the corresponding rainfall mode. The teleconnection patterns reveal some new features and show that some intrinsic midlatitude patterns can be triggered by tropical forcing with different rainfall patterns. Results from this study are relevant to seasonal climate attribution and prediction analyses and climate model evaluation. As an illustration, the teleconnections from the rainfall modes, together with that related to the Niño-3.4 index and linear trend, are applied to the attribution analyses for the global circulation anomalies of 2019/20 winter and the California dry condition during the strong El Niño winter of 2015/16. The overall impact of these modes in the period of 1980–2021 is also discussed.

Significance Statement

This study highlights the seasonal tropical–extratropical atmospheric teleconnections independent of the Niño-3.4 index using tropical rainfall modes for northern winters. The reason for using rainfall rather than SST in the mode decomposition is that rainfall represents vertically integrated latent heat, which is the direct forcing of the tropical atmosphere, while SST may have no definite relationship with rainfall in the Indo-Pacific warm pool region. The results of this study are applicable to the analysis of climate attribution and prediction and climate model evaluation, and further, may also have the potential to help improve seasonal climate forecasts.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peitao Peng, Peitao.Peng@noaa.gov
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alizadeh-Choobari, O., 2017: Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dyn. Atmos. Oceans, 80, 139154, https://doi.org/10.1016/j.dynatmoce.2017.10.004.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. L. T., E. S. Sarachik, P. J. Webster, and L. M. Rothstein, 1998: The TOGA decade: Reviewing the progress of El Niño research and prediction. J. Geophys. Res., 103, 14 16714 510, https://doi.org/10.1029/98JC00112.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Climate, 20, 31643189, https://doi.org/10.1175/JCLI4156.1.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bader, J., and M. Latif, 2003: The impact of decadal-scale Indian Ocean sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30, 2169, https://doi.org/10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific: Research note. Atmos.–Ocean, 35, 367383, https://doi.org/10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2015: ENSO and greenhouse warming. Nat. Climate Change, 5, 849859, https://doi.org/10.1038/nclimate2743.

  • Cash, B. A., and N. J. Burls, 2019: Predictable and unpredictable aspects of U.S. West Coast rainfall and El Niño: Understanding the 2015/16 event. J. Climate, 32, 28432868, https://doi.org/10.1175/JCLI-D-18-0181.1.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature, 455, 523527, https://doi.org/10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and A. Kumar, 2018: Winter 2015/16 atmospheric and precipitation anomalies over North America: El Niño response and the role of noise. Mon. Wea. Rev., 146, 909927, https://doi.org/10.1175/MWR-D-17-0116.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Wang, A. Kumar, H. Wang, and B. Jha, 2012: Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J. Climate, 25, 35663582, https://doi.org/10.1175/JCLI-D-11-00318.1.

    • Search Google Scholar
    • Export Citation
  • Chu, C., X.-Q. Yang, X. Sun, D. Yang, Y. Jiang, T. Feng, and J. Liang, 2018: Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes. Climate Dyn., 50, 30313048, https://doi.org/10.1007/s00382-017-3790-y.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2010: Removing ENSO-related variations from the climate record. J. Climate, 23, 19571978, https://doi.org/10.1175/2009JCLI2735.1.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Search Google Scholar
    • Export Citation
  • Dommenget, D., T. Bayr, and C. Frauen, 2013: Analysis of the non-linearity in the pattern and time evolution of El Niño–Southern Oscillation. Climate Dyn., 40, 28252847, https://doi.org/10.1007/s00382-012-1475-0.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, https://doi.org/10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and C. Cassou, 2015: The dynamical influence of separate teleconnections from the Pacific and Indian Oceans on the northern annular mode. J. Climate, 28, 79858002, https://doi.org/10.1175/JCLI-D-14-00839.1.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and G. Branstator, 2005: Seasonal variability of teleconnection patterns. J. Atmos. Sci., 62, 13461365, https://doi.org/10.1175/JAS3405.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • He, J., N. C. Johnson, G. A. Vecchi, B. Kirtman, A. T. Wittenberg, and S. Sturm, 2018: Precipitation sensitivity to local variations in tropical sea surface temperature. J. Climate, 31, 92259238, https://doi.org/10.1175/JCLI-D-18-0262.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., M. Hoerling, J. Eischeid, K. Wolter, R. Dole, J. Perlwitz, T. Xu, and L. Cheng, 2016: Does El Niño intensity matter for California precipitation? Geophys. Res. Lett., 43, 819825, https://doi.org/10.1002/2015GL067102.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., and A. Kumar, 2002: Atmospheric response patterns associated with tropical forcing. J. Climate, 15, 21842203, https://doi.org/10.1175/1520-0442(2002)015<2184:ARPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., J. W. Hurrell, T. Xu, G. T. Bates, and A. S. Phillips, 2004: Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Climate Dyn., 23, 391405, https://doi.org/10.1007/s00382-004-0433-x.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., M. P. Hoerling, A. Phillips, and T. Xu, 2004: Twentieth century North Atlantic climate change. Part I: Assessing determinism. Climate Dyn., 23, 371389, https://doi.org/10.1007/s00382-004-0432-y.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., J. J. Hack, D. Shea, J. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, M. Lengaigne, and I. Suresh, 2020: Relevance of relative sea surface temperature for tropical rainfall interannual variability. Geophys. Res. Lett., 47, e2019GL086182, https://doi.org/10.1029/2019GL086182.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. E. Waliser, P. B. Gibson, G. Chen, and W. Guan, 2022: Why seasonal prediction of California winter precipitation is challenging. Bull. Amer. Meteor. Soc., 103, E2688E2700, https://doi.org/10.1175/BAMS-D-21-0252.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 37373765, https://doi.org/10.1007/s00382-016-3039-1.

    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño’s impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., F. Molteni, and A. Bracco, 2006: Decadal interactions between the western tropical Pacific and the North Atlantic Oscillation. Climate Dyn., 26, 7991, https://doi.org/10.1007/s00382-005-0085-5.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2020: Understanding skill of seasonal mean precipitation prediction over California during boreal winter and role of predictability limits. J. Climate, 33, 61416163, https://doi.org/10.1175/JCLI-D-19-0275.1.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., M. Chen, and W. Wang, 2013: Understanding prediction skill of seasonal mean precipitation over the tropics. J. Climate, 26, 56745681, https://doi.org/10.1175/JCLI-D-12-00731.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2133, https://doi.org/10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., M. K. Tippett, and A. G. Barnston, 2015: Characterizing ENSO coupled variability and its impact on North American seasonal precipitation and temperature. J. Climate, 28, 42314245, https://doi.org/10.1175/JCLI-D-14-00508.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian Oscillation. J. Climate, 22, 364380, https://doi.org/10.1175/2008JCLI2515.1.

    • Search Google Scholar
    • Export Citation
  • Linkin, M. E., and S. Nigam, 2008: The North Pacific Oscillation and western North Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 19791997, https://doi.org/10.1175/2007JCLI2048.1.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., T. N. Stockdale, and F. Vitart, 2015: Understanding and modelling extra-tropical teleconnections with the Indo-Pacific region during the northern winter. Climate Dyn., 45, 31193140, https://doi.org/10.1007/s00382-015-2528-y.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., and R. E. Livezey, 1988: Practical considerations in the use of rotated principal components analysis (RPCA) in diagnostic studies of upper-air height fields. Mon. Wea. Rev., 116, 16821689, https://doi.org/10.1175/1520-0493(1988)116<1682:PCITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, and W. Wang, 2011: An analysis of seasonal predictability in coupled model forecasts. Climate Dyn., 36, 637648, https://doi.org/10.1007/s00382-009-0711-8.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, and B. Jha, 2014: Climate mean, variability and dominant patterns of the Northern Hemisphere wintertime mean atmospheric circulation in the NCEP CFSv2. Climate Dyn., 42, 27832799, https://doi.org/10.1007/s00382-014-2116-6.

    • Search Google Scholar
    • Export Citation
  • Peng, P., A. Kumar, M. Chen, Z.-Z. Hu, and B. Jha, 2019: Was the North American extreme climate in winter 2013/14 a SST forced response? Climate Dyn., 52, 30993110, https://doi.org/10.1007/s00382-018-4314-0.

    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schonher, T., and S. E. Nicholson, 1989: The relationship between California rainfall and ENSO events. J. Climate, 2, 12581269, https://doi.org/10.1175/1520-0442(1989)002<1258:TRBCRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, M. Ting, M. A. Cane, N. Harnik, and Y. Kushnir, 2010: Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Quart. J. Roy. Meteor. Soc., 136, 277296, https://doi.org/10.1002/qj.588.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., and Coauthors, 2000: Dynamical seasonal prediction. Bull. Amer. Meteor. Soc., 81, 25932606, https://doi.org/10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical‐extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902937, https://doi.org/10.1002/2016RG000538.

    • Search Google Scholar
    • Export Citation
  • Swenson, E. T., D. M. Straus, C. E. Snide, and A. A. Fahad, 2019: The role of tropical heating and internal variability in the California response to the 2015/16 ENSO event. J. Atmos. Sci., 76, 31153128, https://doi.org/10.1175/JAS-D-19-0064.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and P. D. Sardeshmukh, 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918, https://doi.org/10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H. M., P. Peng, Å. Johansson, M. Chelliah, A. Shabbar, and S. Saha, 2006: Seasonal-to-decadal predictability and prediction of North American climate—The Atlantic influence. J. Climate, 19, 60056024, https://doi.org/10.1175/JCLI3942.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S., A. Anichowski, M. K. Tippett, and A. H. Sobel, 2017: Seasonal noise versus subseasonal signal: Forecasts of California precipitation during the unusual winters of 2015–2016 and 2016–2017. Geophys. Res. Lett., 44, 95139520, https://doi.org/10.1002/2017GL075052.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, S., T. Zhang, Z. Li, and S. Dong, 2019: Climate variability over the Maritime Continent and its role in global climate variation: A review. J. Meteor. Res., 33, 9931015, https://doi.org/10.1007/s13351-019-9025-x.

    • Search Google Scholar
    • Export Citation
  • Yang, X., L. Jia, S. B. Kapnick, T. L. Delworth, G. A. Vecchi, R. Gudgel, S. Underwood, and F. Zeng, 2018: On the seasonal prediction of the western United States El Niño precipitation pattern during the 2015/16 winter. Climate Dyn., 51, 37653783, https://doi.org/10.1007/s00382-018-4109-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 495 495 6
Full Text Views 180 180 1
PDF Downloads 218 218 2