Constraint of Air–Sea Interaction Significant to Skillful Predictions of North Pacific Climate Variations

Yujun He aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yujun He in
Current site
Google Scholar
PubMed
Close
,
Bin Wang aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China
cCollege of Ocean Science, University of Chinese Academy of Sciences, Beijing, China
dSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
Jiabei Fang eCMA-NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Jiabei Fang in
Current site
Google Scholar
PubMed
Close
,
Yongqiang Yu aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cCollege of Ocean Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yongqiang Yu in
Current site
Google Scholar
PubMed
Close
,
Lijuan Li aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijuan Li in
Current site
Google Scholar
PubMed
Close
,
Juanjuan Liu aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Juanjuan Liu in
Current site
Google Scholar
PubMed
Close
,
Li Dong aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Li Dong in
Current site
Google Scholar
PubMed
Close
,
Ye Pu aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ye Pu in
Current site
Google Scholar
PubMed
Close
,
Yiyuan Li aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yiyuan Li in
Current site
Google Scholar
PubMed
Close
,
Shiming Xu bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Shiming Xu in
Current site
Google Scholar
PubMed
Close
,
Li Liu bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Li Liu in
Current site
Google Scholar
PubMed
Close
,
Yanluan Lin bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yanluan Lin in
Current site
Google Scholar
PubMed
Close
,
Wenyu Huang bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Wenyu Huang in
Current site
Google Scholar
PubMed
Close
,
Xiaomeng Huang bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Xiaomeng Huang in
Current site
Google Scholar
PubMed
Close
,
Yong Wang bMinistry of Education Key Laboratory for Earth System Modeling and Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
,
Hongbo Liu aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Hongbo Liu in
Current site
Google Scholar
PubMed
Close
, and
Kun Xia aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Kun Xia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Pacific decadal oscillation (PDO) is the most dominant decadal climate variability over the North Pacific and has substantial global impacts. However, the interannual and decadal PDO prediction skills are not satisfactory, which may result from the failure of appropriately including the North Pacific midlatitude air–sea interaction (ASI) in the initialization for climate predictions. Here, we present a novel initialization method with a climate model to crack this nutshell and achieve successful PDO index predictions up to 10 years in advance. This approach incorporates oceanic observations under the constraint of ASI, thus obtaining atmospheric initial conditions (ICs) consistent with oceanic ICs. During predictions, positive atmospheric feedback to sea surface temperature changes and time-delayed negative ocean circulation feedback to the atmosphere over the North Pacific play essential roles in the high PDO index prediction skills. Our findings highlight a great potential of ASI constraints during initialization for skillful PDO predictions.

Significance Statement

The Pacific decadal oscillation is a prominent decadal climate variability over the North Pacific. However, accurately predicting the Pacific decadal oscillation remains a challenge. In this study, we use an advanced initialization method where the oceanic observations are incorporated into a climate model constrained by air–sea interactions. We can successfully predict the Pacific decadal oscillation up to 10 years in advance, which is hardly achieved by the state-of-the-art climate prediction systems. Our results suggest that the constraint of air–sea interaction during initialization is important to skillful predictions of the climate variability on decadal time scales.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Wang, wab@lasg.iap.ac.cn

Abstract

The Pacific decadal oscillation (PDO) is the most dominant decadal climate variability over the North Pacific and has substantial global impacts. However, the interannual and decadal PDO prediction skills are not satisfactory, which may result from the failure of appropriately including the North Pacific midlatitude air–sea interaction (ASI) in the initialization for climate predictions. Here, we present a novel initialization method with a climate model to crack this nutshell and achieve successful PDO index predictions up to 10 years in advance. This approach incorporates oceanic observations under the constraint of ASI, thus obtaining atmospheric initial conditions (ICs) consistent with oceanic ICs. During predictions, positive atmospheric feedback to sea surface temperature changes and time-delayed negative ocean circulation feedback to the atmosphere over the North Pacific play essential roles in the high PDO index prediction skills. Our findings highlight a great potential of ASI constraints during initialization for skillful PDO predictions.

Significance Statement

The Pacific decadal oscillation is a prominent decadal climate variability over the North Pacific. However, accurately predicting the Pacific decadal oscillation remains a challenge. In this study, we use an advanced initialization method where the oceanic observations are incorporated into a climate model constrained by air–sea interactions. We can successfully predict the Pacific decadal oscillation up to 10 years in advance, which is hardly achieved by the state-of-the-art climate prediction systems. Our results suggest that the constraint of air–sea interaction during initialization is important to skillful predictions of the climate variability on decadal time scales.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Wang, wab@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.9727 MB)
Save
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., D. W. Pierce, R. Saravanan, N. Schneider, D. Dommenget, and M. Latif, 1999: Origins of the midlatitude Pacific decadal variability. Geophys. Res. Lett., 26, 14531456, https://doi.org/10.1029/1999GL900278.

    • Search Google Scholar
    • Export Citation
  • Bethke, I., and Coauthors, 2021: NorCPM1 and its contribution to CMIP6 DCPP. Geosci. Model Dev., 14, 70737116, https://doi.org/10.5194/gmd-14-7073-2021.

    • Search Google Scholar
    • Export Citation
  • Bilbao, R., and Coauthors, 2021: Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth. Earth Syst. Dyn., 12, 173196, https://doi.org/10.5194/esd-12-173-2021.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Search Google Scholar
    • Export Citation
  • Choi, J., and S.-W. Son, 2022: Seasonal-to-decadal prediction of El Niño–Southern Oscillation and Pacific decadal oscillation. npj Climate Atmos. Sci., 5, 29, https://doi.org/10.1038/s41612-022-00251-9.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, https://doi.org/10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, H., R. J. Greatbatch, M. Latif, W. Park, and R. Gerdes, 2013: Hindcast of the 1976/77 and 1998/99 climate shifts in the Pacific. J. Climate, 26, 76507661, https://doi.org/10.1175/JCLI-D-12-00626.1.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Ehsan, M. A., and Coauthors, 2020: Atlantic Ocean influence on Middle East summer surface air temperature. npj Climate Atmos. Sci., 3, 5, https://doi.org/10.1038/s41612-020-0109-1.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fang, J.-B., and X.-Q. Yang, 2011: The relative roles of different physical processes in unstable midlatitude ocean–atmosphere interactions. J. Climate, 24, 15421558, https://doi.org/10.1175/2010JCLI3618.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J.-B., and X.-Q. Yang, 2016: Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Climate Dyn., 47, 19892007, https://doi.org/10.1007/s00382-015-2946-x.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., F. Molteni, and F. Kucharski, 2014: Pacific interdecadal variability driven by tropical–extratropical interactions. Climate Dyn., 42, 33373355, https://doi.org/10.1007/s00382-013-1906-6.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., and Coauthors, 2016: Making sense of the early-2000s warming slowdown. Nat. Climate Change, 6, 224228, https://doi.org/10.1038/nclimate2938.

    • Search Google Scholar
    • Export Citation
  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, https://doi.org/10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., F. J. Doblas-Reyes, F. Lienert, Y. Soufflet, and H. Du, 2012: Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res., 117, D20111, https://doi.org/10.1029/2012JD018004.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2017: Reduction of initial shock in decadal predictions using a new initialization strategy. Geophys. Res. Lett., 44, 85388547, https://doi.org/10.1002/2017GL074028.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2020a: A DRP-4DVar-based coupled data assimilation system with a simplified off-line localization technique for decadal predictions. J. Adv. Model. Earth Syst., 12, e2019MS001768, https://doi.org/10.1029/2019MS001768.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2020b: A new DRP-4DVar-based coupled data assimilation system for decadal predictions using a fast online localization technique. Climate Dyn., 54, 35413559, https://doi.org/10.1007/s00382-020-05190-w.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S.-I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155170, https://doi.org/10.1007/s10872-006-0041-y.

    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., M. Kimoto, and X. Wang, 2001: A model of decadal ocean–atmosphere interaction in the North Pacific Basin. Geophys. Res. Lett., 28, 15311534, https://doi.org/10.1029/2000GL008478.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 369 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kataoka, T., and Coauthors, 2020: Seasonal to decadal predictions with MIROC6: Description and basic evaluation. J. Adv. Model. Earth Syst., 12, e2019MS002035, https://doi.org/10.1029/2019MS002035.

    • Search Google Scholar
    • Export Citation
  • Kim, H. M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short‐term climate change prediction in multi‐model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701, https://doi.org/10.1029/2012GL051644.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634637, https://doi.org/10.1126/science.266.5185.634.

    • Search Google Scholar
    • Export Citation
  • Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 24072423, https://doi.org/10.1175/1520-0442(1996)009<2407:DCVOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, F., B. Wang, Y. He, W. Huang, S. Xu, L. Liu, J. Liu, and L. Li, 2021: Important role of North Atlantic air–sea coupling in the interannual predictability of summer precipitation over the eastern Tibetan Plateau. Climate Dyn., 56, 14331448, https://doi.org/10.1007/s00382-020-05542-6.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Li, S., and Coauthors, 2020: The Pacific decadal oscillation less predictable under greenhouse warming. Nat. Climate Change, 10, 3034, https://doi.org/10.1038/s41558-019-0663-x.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. F. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, H., F. Zheng, N. Keenlyside, and J. Zhu, 2020: Ocean–atmosphere coupled Pacific Decadal variability simulated by a climate model. Climate Dyn., 54, 47594773, https://doi.org/10.1007/s00382-020-05248-9.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., N. Yuan, T. Dong, and W. Dong, 2022: On the Pacific decadal oscillation simulations in CMIP6 models: A new test-bed from climate network analysis. Asia-Pac. J. Atmos. Sci., 59, 1728, https://doi.org/10.1007/s13143-022-00286-1.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and R. A. Plumb, 2008: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. International Geophysics Series, Vol. 93, Academic Press, 344 pp.

  • Matei, D., H. Pohlmann, J. Jungclaus, W. Müller, H. Haak, and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, https://doi.org/10.1175/JCLI-D-11-00633.1.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and A. Hu, 2006: Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Climate, 19, 16051623, https://doi.org/10.1175/JCLI3675.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2014: CMIP5 multi‐model hindcasts for the mid‐1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 17111716, https://doi.org/10.1002/2014GL059256.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014a: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, https://doi.org/10.1038/nclimate2357.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2014b: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243267, https://doi.org/10.1175/BAMS-D-12-00241.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and H. Teng, 2016: Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation. Nat. Commun., 7, 11718, https://doi.org/10.1038/ncomms11718.

    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Search Google Scholar
    • Export Citation
  • Mignani, S., and R. Rosa, 1995: The moving block bootstrap to assess the accuracy of statistical estimates in using model simulations. Comput. Phys. Commun., 92, 203213, https://doi.org/10.1016/0010-4655(95)00114-7.

    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2010: Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 18331837, https://doi.org/10.1073/pnas.0906531107.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2010: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, 474 pp.

  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate, 147, 329345, https://doi.org/10.1029/147GM18.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • Osgood, K. E., 2008: Climate impacts on US living marine resources: National Marine Fisheries Services concerns, activities, and needs. NOAA Tech. Memo NMFS-F/SPO-89, 130 pp., https://repository.library.noaa.gov/view/noaa/488.

  • Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for Integrated Earth System analysis and prediction. Bull. Amer. Meteor. Soc., 98, ES169ES172.

    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., W. A. Muller, M. Bittner, S. Hettrich, K. Modali, K. Pankatz, and J. Marotzke, 2019: Realistic quasi‐biennial oscillation variability in historical and decadal hindcast simulations using CMIP6 forcing. Geophys. Res. Lett., 46, 14 11814 125, https://doi.org/10.1029/2019GL084878.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Tseitkin, V. Mehta, B. Lavery, S. Torok, and N. Holbrook, 1999: Decadal climate variability in Australia during the twentieth century. Int. J. Climatol., 19, 169184, https://doi.org/10.1002/(SICI)1097-0088(199902)19:2<169::AID-JOC356>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Primeau, F., and P. Cessi, 2001: Coupling between wind-driven currents and midlatitude storm tracks. J. Climate, 14, 12431261, https://doi.org/10.1175/1520-0442(2001)014<1243:CBWDCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., A. J. Miller, and D. W. Pierce, 2002: Anatomy of North Pacific decadal variability. J. Climate, 15, 586605, https://doi.org/10.1175/1520-0442(2002)015<0586:AONPDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shi, P., and Coauthors, 2021: Significant land contributions to interannual predictability of East Asian summer monsoon rainfall. Earth’s Future, 9, e2020EF001762, https://doi.org/10.1029/2020EF001762.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, https://doi.org/10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Sospedra-Alfonso, R., W. J. Merryfield, G. J. Boer, V. V. Kharin, W.-S. Lee, C. Seiler, and J. R. Christian, 2021: Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5). Geosci. Model Dev., 14, 68636891, https://doi.org/10.5194/gmd-14-6863-2021.

    • Search Google Scholar
    • Export Citation
  • Tao, L., X.-Q. Yang, J. Fang, and X. Sun, 2020: PDO-related wintertime atmospheric anomalies over the midlatitude North Pacific: Local versus remote SST forcing. J. Climate, 33, 69897010, https://doi.org/10.1175/JCLI-D-19-0143.1.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2012: The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteor. Soc. Japan, 90A, 275294, https://doi.org/10.2151/jmsj.2012-A14.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphere–ocean variations in the Pacific. Climate Dyn., 9, 303319, https://doi.org/10.1007/BF00204745.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, https://doi.org/10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2010: Needs assessment for climate information on decadal timescales and longer. Procedia Environ. Sci., 1, 275286, https://doi.org/10.1016/j.proenv.2010.09.017.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, S. Wang, W. Cheng, L. Juan, C. Liu, Q. Xiao, and Y.-H. Kuo, 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715727, https://doi.org/10.1007/s00376-009-9122-3.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2013: Preliminary evaluations of FGOALS-g2 for decadal predictions. Adv. Atmos. Sci., 30, 674683, https://doi.org/10.1007/s00376-012-2084-x.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, L. Liu, S. Xu, and W. Huang, 2018: An approach to localization for ensemble-based data assimilation. PLOS ONE, 13, e0191088, https://doi.org/10.1371/journal.pone.0191088.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., F. Counillon, I. Bethke, N. Keenlyside, M. Bocquet, and M. Shen, 2017: Optimising assimilation of hydrographic profiles into isopycnal ocean models with ensemble data assimilation. Ocean Modell., 114, 3344, https://doi.org/10.1016/j.ocemod.2017.04.007.

    • Search Google Scholar
    • Export Citation
  • Wiegand, K. N., S. Brune, and J. Baehr, 2019: Predictability of multiyear trends of the Pacific decadal oscillation in an MPI-ESM hindcast ensemble. Geophys. Res. Lett., 46, 318325, https://doi.org/10.1029/2018GL080661.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2019: Frequentist statistical inference. Statistical Methods in the Atmospheric Sciences, 4th ed. D. S. Wilks, Ed., Elsevier, 143–207.

  • Wu, T., and Coauthors, 2019: The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev., 12, 15731600, https://doi.org/10.5194/gmd-12-1573-2019.

    • Search Google Scholar
    • Export Citation
  • Xin, X.-G., T.-W. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Climate Change. Res., 4, 4149, https://doi.org/10.3724/SP.J.1248.2013.00041.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., L. Zhao, Y. He, and B. Wang, 2020: Perspectives for Tibetan Plateau data assimilation. Natl. Sci. Rev., 7, 495499, https://doi.org/10.1093/nsr/nwaa014.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and Coauthors, 2018: Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Amer. Meteor. Soc., 99, 18671886, https://doi.org/10.1175/BAMS-D-17-0098.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., T. Furevik, O. H. Otterå, and Y. Gao, 2015: Modulation of the Pacific decadal oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model. Climate Dyn., 44, 475494, https://doi.org/10.1007/s00382-014-2141-5.

    • Search Google Scholar
    • Export Citation
  • Yuan, N., and Z. Lu, 2020: Warming reduces predictability. Nat. Climate Change, 10, 1314, https://doi.org/10.1038/s41558-019-0669-4.

  • Zhang, L., and T. L. Delworth, 2015: Analysis of the characteristics and mechanisms of the Pacific decadal oscillation in a suite of coupled models from the Geophysical Fluid Dynamics Laboratory. J. Climate, 28, 76787701, https://doi.org/10.1175/JCLI-D-14-00647.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., M. J. Harrison, A. Rosati, and A. Wittenberg, 2007: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon. Wea. Rev., 135, 35413564, https://doi.org/10.1175/MWR3466.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, J. Ma, T. Wang, and J. Sun, 2015: Contribution of the phase transition of Pacific decadal oscillation to the late 1990s’ shift in East China summer rainfall. J. Geophys. Res. Atmos., 120, 88178827, https://doi.org/10.1002/2015JD023545.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 343 343 67
Full Text Views 145 145 23
PDF Downloads 182 182 22