The CESM2 Single-Forcing Large Ensemble and Comparison to CESM1: Implications for Experimental Design

Isla R. Simpson aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Isla R. Simpson in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2915-1377
,
Nan Rosenbloom aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Nan Rosenbloom in
Current site
Google Scholar
PubMed
Close
,
Gokhan Danabasoglu aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gokhan Danabasoglu in
Current site
Google Scholar
PubMed
Close
,
Clara Deser aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Clara Deser in
Current site
Google Scholar
PubMed
Close
,
Stephen G. Yeager aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Stephen G. Yeager in
Current site
Google Scholar
PubMed
Close
,
Christina S. McCluskey aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Christina S. McCluskey in
Current site
Google Scholar
PubMed
Close
,
Ryohei Yamaguchi bJapan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Ryohei Yamaguchi in
Current site
Google Scholar
PubMed
Close
,
Jean-Francois Lamarque aClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Jean-Francois Lamarque in
Current site
Google Scholar
PubMed
Close
,
Simone Tilmes cAtmospheric Chemistry Observations and Modelling Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Simone Tilmes in
Current site
Google Scholar
PubMed
Close
,
Michael J. Mills cAtmospheric Chemistry Observations and Modelling Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Michael J. Mills in
Current site
Google Scholar
PubMed
Close
, and
Keith B. Rodgers dCenter for Climate Physics, Institute for Basic Science, Busan, South Korea
ePusan National University, Busan, South Korea

Search for other papers by Keith B. Rodgers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Single-forcing large ensembles are a relatively new tool for quantifying the contributions of different anthropogenic and natural forcings to the historical and future projected evolution of the climate system. This study introduces a new single-forcing large ensemble with the Community Earth System Model, version 2 (CESM2), which can be used to separate the influences of greenhouse gases, anthropogenic aerosols, biomass burning aerosols, and all remaining forcings on the evolution of the Earth system from 1850 to 2050. Here, the forced responses of global near-surface temperature and associated drivers are examined in CESM2 and compared with those in a single-forcing large ensemble with CESM2’s predecessor, CESM1. The experimental design, the imposed forcing, and the model physics all differ between the CESM1 and CESM2 ensembles. In CESM1, an “all-but-one” approach was used whereby everything except the forcing of interest is time evolving, while in CESM2 an “only” approach is used, whereby only the forcing of interest is time evolving. This experimental design choice is shown to matter considerably for anthropogenic aerosol-forced change in CESM2, due to state dependence of cryospheric albedo feedbacks and nonlinearity in the Atlantic meridional overturning circulation (AMOC) response to forcing. This impact of experimental design is, however, strongly dependent on the model physics and/or the imposed forcing, as the same sensitivity to experimental design is not found in CESM1, which appears to be an inherently less nonlinear model in both its AMOC behavior and cryospheric feedbacks.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (https://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla Simpson, islas@ucar.edu

Abstract

Single-forcing large ensembles are a relatively new tool for quantifying the contributions of different anthropogenic and natural forcings to the historical and future projected evolution of the climate system. This study introduces a new single-forcing large ensemble with the Community Earth System Model, version 2 (CESM2), which can be used to separate the influences of greenhouse gases, anthropogenic aerosols, biomass burning aerosols, and all remaining forcings on the evolution of the Earth system from 1850 to 2050. Here, the forced responses of global near-surface temperature and associated drivers are examined in CESM2 and compared with those in a single-forcing large ensemble with CESM2’s predecessor, CESM1. The experimental design, the imposed forcing, and the model physics all differ between the CESM1 and CESM2 ensembles. In CESM1, an “all-but-one” approach was used whereby everything except the forcing of interest is time evolving, while in CESM2 an “only” approach is used, whereby only the forcing of interest is time evolving. This experimental design choice is shown to matter considerably for anthropogenic aerosol-forced change in CESM2, due to state dependence of cryospheric albedo feedbacks and nonlinearity in the Atlantic meridional overturning circulation (AMOC) response to forcing. This impact of experimental design is, however, strongly dependent on the model physics and/or the imposed forcing, as the same sensitivity to experimental design is not found in CESM1, which appears to be an inherently less nonlinear model in both its AMOC behavior and cryospheric feedbacks.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (https://www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla Simpson, islas@ucar.edu

Supplementary Materials

    • Supplemental Materials (PDF 24.518 MB)
Save
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Search Google Scholar
    • Export Citation
  • Baek, S. H., Y. Kushnir, M. Ting, J. E. Smerdon, and J. M. Lora, 2022: Regional signatures of forced North Atlantic SST variability: A limited role for aerosols and greenhouse gases. Geophys. Res. Lett., 49, e2022GL097794, https://doi.org/10.1029/2022GL097794.

    • Search Google Scholar
    • Export Citation
  • Bogenschutz, P. A., A. Gettelman, C. Hannay, V. E. Larson, R. B. Neale, C. Craig, and C.-C. Chen, 2018: The path to CAM6: Coupled simulations with CAM5.4 and CAM5.5. Geosci. Model Dev., 11, 235255, https://doi.org/10.5194/gmd-11-235-2018.

    • Search Google Scholar
    • Export Citation
  • Bonfils, C. J. W., B. D. Santer, J. C. Fyfe, K. Marvel, T. J. Phillips, and S. R. H. Zimmerman, 2020: Human influence on joint changes in temperature, rainfall and continental aridity. Nat. Climate Change, 10, 726731, https://doi.org/10.1038/s41558-020-0821-1.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., and T. Koenigk, 2016: Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Climate Dyn., 46, 28632882, https://doi.org/10.1007/s00382-015-2736-5.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific decadal variability in the Community Earth System Model version 2. J. Adv. Model. Earth Syst., 12, e2019MS002022, https://doi.org/10.1029/2019MS002022.

    • Search Google Scholar
    • Export Citation
  • Chiang, F., O. Mazdiyasni, and A. AghaKouchak, 2021: Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun., 12, 2754, https://doi.org/10.1038/s41467-021-22314-w.

    • Search Google Scholar
    • Export Citation
  • Dagan, G., P. Stier, and D. Watson-Parris, 2020: Aerosol forcing masks and delays the formation of the North Atlantic warming hole by three decades. Geophys. Res. Lett., 47, e2020GL090778, https://doi.org/10.1029/2020GL090778.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock, and S. G. Yeager, 2012: The CCSM4 ocean component. J. Climate, 25, 13611389, https://doi.org/10.1175/JCLI-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., L. Landrum, S. G. Yeager, and P. R. Gent, 2019: Robust and nonrobust aspects of Atlantic meridional overturning circulation variability and mechanisms in the Community Earth System Model. J. Climate, 32, 73497368, https://doi.org/10.1175/JCLI-D-19-0026.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, https://doi.org/10.1038/ngeo2201.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, L. Zhang, R. Zhang, G. Vecchi, and X. Yang, 2017: The central role of ocean dynamics in connecting the North Atlantic Oscillation to the extratropical component of the Atlantic multidecadal oscillation. J. Climate, 30, 37893805, https://doi.org/10.1175/JCLI-D-16-0358.1.

    • Search Google Scholar
    • Export Citation
  • Deng, J., A. Dai, and H. Xu, 2020: Nonlinear climate response to increasing CO2 and anthropogenic aerosols simulated by CESM1. J. Climate, 33, 281301, https://doi.org/10.1175/JCLI-D-19-0195.1.

    • Search Google Scholar
    • Export Citation
  • DeRepentigny, P., and Coauthors, 2022: Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. Sci. Adv., 8, eabo2405, https://doi.org/10.1126/sciadv.abo2405.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. A. Tomas, and L. Sun, 2015: The role of ocean–atmosphere coupling in the zonal mean atmospheric response to Arctic sea ice loss. J. Climate, 28, 21682186, https://doi.org/10.1175/JCLI-D-14-00325.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020a: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020b: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33, 78357858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., E. Hawkins, J. I. Robson, D. M. Smith, and L. J. Wilcox, 2021: Drivers of recent North Pacific decadal variability: The role of aerosol forcing. Earth’s Future, 9, e2021EF002249, https://doi.org/10.1029/2021EF002249.

    • Search Google Scholar
    • Export Citation
  • Dixon, K. W., T. L. Delworth, M. J. Spelman, and R. J. Stouffer, 1999: The influence of transient surface fluxes on North Atlantic overturning in a coupled GCM climate change experiment. Geophys. Res. Lett., 26, 27492752, https://doi.org/10.1029/1999GL900571.

    • Search Google Scholar
    • Export Citation
  • Dong, B., R. T. Sutton, E. Highwood, and L. Wilcox, 2014: The impacts of European and Asian anthropogenic sulfur dioxide emissions on Sahel rainfall. J. Climate, 27, 70007017, https://doi.org/10.1175/JCLI-D-13-00769.1.

    • Search Google Scholar
    • Export Citation
  • DuVivier, A. K., M. M. Holland, J. E. Kay, S. Tilmes, A. Gettelman, and D. A. Bailey, 2020: Arctic and Antarctic sea ice mean state in the Community Earth System Model version 2 and the influence of atmospheric chemistry. J. Geophys. Res. Oceans, 125, e2019JC015934, https://doi.org/10.1029/2019JC015934.

    • Search Google Scholar
    • Export Citation
  • England, M. R., I. Eisenman, N. J. Lutsko, and T. J. W. Wagner, 2021: The recent emergence of Arctic amplification. Geophys. Res. Lett., 48, e2021GL094086, https://doi.org/10.1029/2021GL094086.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., P. R. Gent, and R. S. Nerem, 2020: Sea level rise in the CESM large ensemble: The role of individual climate forcings and consequences for the coming decades. J. Climate, 33, 69116927, https://doi.org/10.1175/JCLI-D-19-1001.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., J.-F. Lamarque, C. Hannay, N. Rosenbloom, S. Tilmes, P. DeRepentigny, A. Jahn, and C. Deser, 2021: Spurious late historical-era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett., 49, e2021GL097420, https://doi.org/10.1029/2021GL097420.

    • Search Google Scholar
    • Export Citation
  • Feichter, J., E. Roeckner, U. Lohmann, and B. Liepert, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17, 23842398, https://doi.org/10.1175/1520-0442(2004)017<2384:NAOTCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., V. V. Kharin, B. D. Santer, J. N. S. Cole, and N. P. Gillett, 2021: Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proc. Natl. Acad. Sci. USA, 118, e2016549118, https://doi.org/10.1073/pnas.2016549118.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and H. Morrison, 2015: Advanced two-moment bulk microphysics for global models. Part 2: Off-line tests and comparison with other schemes. J. Climate, 28, 12681287, https://doi.org/10.1175/JCLI-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., and A. Kaplan, 2019: The role of aerosols and greenhouse gases in Sahel drought and recovery. Climatic Change, 152, 449466, https://doi.org/10.1007/s10584-018-2341-9.

    • Search Google Scholar
    • Export Citation
  • Gidden, M. J., and Coauthors, 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 14431475, https://doi.org/10.5194/gmd-12-1443-2019.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2016: The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev., 9, 36853697, https://doi.org/10.5194/gmd-9-3685-2016.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2021: Constraining human contributions to observed warming since the pre-industrial period. Nat. Climate Change, 11, 207212, https://doi.org/10.1038/s41558-020-00965-9.

    • Search Google Scholar
    • Export Citation
  • Hassan, T., R. J. Allen, W. Liu, and C. A. Randles, 2021: Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmos. Chem. Phys., 21, 58215846, https://doi.org/10.5194/acp-21-5821-2021.

    • Search Google Scholar
    • Export Citation
  • Hassan, T., and Coauthors, 2022: Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Nat. Commun. Earth Environ., 3, 149, https://doi.org/10.1038/s43247-022-00476-9.

    • Search Google Scholar
    • Export Citation
  • Hirasawa, H., P. J. Kushner, M. Sigmond, J. Fyfe, and C. Deser, 2020: Anthropogenic aerosols dominate forced multidecadal Sahel precipitation change through distinct atmospheric and oceanic drivers. J. Climate, 33, 10 18710 204, https://doi.org/10.1175/JCLI-D-19-0829.1.

    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user’s manual, version 5.1. Doc. LA-CC-06-012, 116 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte, Eds., Cambridge University Press, 3–32.

  • Jahn, A., and M. M. Holland, 2013: Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys. Res. Lett., 40, 12061211, https://doi.org/10.1002/grl.50183.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J. F., G. P. Kyle, M. Meinshausen, K. Riahi, S. J. Smith, D. P. van Vuuren, A. J. Conley, and F. Vitt, 2011: Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191212, https://doi.org/10.1007/s10584-011-0155-0.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in the NCAR CSM ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS00045.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2019: The Community Land Model, version 5: Description of new features, benchmarking and impact of forcing uncertainty. J. Adv. Model. Earth Syst., 11, 42454287, https://doi.org/10.1029/2018MS001583.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Federov, and W. Liu, 2021: AMOC stability and diverging response to Arctic sea ice decline in two climate models. J. Climate, 34, 54435460, https://doi.org/10.1175/JCLI-D-20-0572.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, and D. E. Lee, 2018: Fast adjustments of the Asian summer monsoon to anthropogenic aerosols. Geophys. Res. Lett., 45, 10011010, https://doi.org/10.1002/2017GL076667.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Model Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.

    • Search Google Scholar
    • Export Citation
  • Lombardozzi, D. L., Y. Lu, P. J. Lawrence, D. M. Lawrence, S. Swenson, K. W. Oleson, W. R. Wieder, and E. A. Ainsworth, 2020: Simulating agriculture in the Community Land Model version 5. J. Geophys. Res. Biogeosci., 125, e2019JG005529, https://doi.org/10.1029/2019JG005529.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1993: Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature, 364, 215218, https://doi.org/10.1038/364215a0.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., D. R. Jackett, D. G. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol., 20, 730741, https://doi.org/10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., W. M. Washington, C. M. Ammann, J. M. Arblaster, T. M. L. Wigley, and C. Tebaldi, 2004: Combinations of natural and anthropogenic forcings in twentieth-century climate. J. Climate, 17, 37213727, https://doi.org/10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Shields, J. M. Arblaster, H. Annamalai, and R. Neale, 2020: Intraseasonal, seasonal, and interannual characteristics of regional monsoon simulations in CESM2. J. Adv. Model. Earth Syst., 12, e2019MS001962, https://doi.org/10.1029/2019MS001962.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, https://doi.org/10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The shared Socio-Economic Pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Search Google Scholar
    • Export Citation
  • Menary, M. B., J. Robson, R. P. Allan, B. B. B. Booth, C. Cassou, and G. Gastineau, 2020: Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett., 47, e2020GL088166, https://doi.org/10.1029/2020GL088166.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339, https://doi.org/10.1175/2008JCLI2362.1.

    • Search Google Scholar
    • Export Citation
  • Monerie, P.-A., L. J. Wilcox, and A. G. Turner, 2022: Effects of anthropogenic aerosol and greenhouse gas emissions on Northern Hemisphere monsoon precipitation: Mechanisms and uncertainty. J. Climate, 35, 23052326, https://doi.org/10.1175/JCLI-D-21-0412.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the NCAR Community Atmosphere Model (CAM3). Part 1: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, B. L., N. P. Gillett, A. H. Monahan, and F. W. Zwiers, 2018: Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas and anthropogenic aerosol forcing. J. Climate, 31, 77717787, https://doi.org/10.1175/JCLI-D-17-0552.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., D. B. Coleman, C. Deser, F. Lehner, N. Rosenbloom, and I. R. Simpson, 2019: Nonlinear response of extreme precipitation to warming in CESM1. Geophys. Res. Lett., 46, 10 55110 560, https://doi.org/10.1029/2019GL084826.

    • Search Google Scholar
    • Export Citation
  • Robson, J., and Coauthors, 2022: The role of anthropogenic aerosol forcing in the 1850–1985 strengthening of the AMOC in CMIP6 historical simulations. J. Climate, 35, 32433263, https://doi.org/10.1175/JCLI-D-22-0124.1.

    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., and Coauthors, 2021: Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn., 12, 13931411, https://doi.org/10.5194/esd-12-1393-2021.

    • Search Google Scholar
    • Export Citation
  • Seong, M., S. Min, Y. Kim, X. Zhang, and Y. Sun, 2021: Anthropogenic greenhouse gas and aerosol contributions to extreme temperature changes during 1951–2015. J. Climate, 34, 857870, https://doi.org/10.1175/JCLI-D-19-1023.1.

    • Search Google Scholar
    • Export Citation
  • Shi, J.-R., Y.-O. Kwon, and S. Wijffels, 2022: Two distinct modes of climate responses to the anthropogenic aerosol forcing changes. J. Climate, 35, 34453457, https://doi.org/10.1175/JCLI-D-21-0656.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and Coauthors, 2020: An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., D. M. Lawrence, S. C. Swenson, C. Hannay, K. A. McKinnon, and J. E. Truesdale, 2022: Improvements in wintertime surface temperature variability in the Community Earth System Model version 2 (CESM2) related to the representation of snow density. J. Adv. Model. Earth Syst., 14, e2021MS002880, https://doi.org/10.1029/2021ms002880.

    • Search Google Scholar
    • Export Citation
  • Singh, D., S. P. McDermid, B. I. Cok, M. J. Puma, L. Nazarenko, and M. Kelley, 2018: Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos., 123, 12 01712 039, https://doi.org/10.1029/2018JD028874.

    • Search Google Scholar
    • Export Citation
  • Smith, D., and Coauthors, 2022: Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP). Front. Climate, 4, 955414, https://doi.org/10.3389/fclim.2022.955414.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM). LANL Tech. Rep., 141 pp., https://opensky.ucar.edu/islandora/object/manuscripts%3A825/datastream/PDF/view.

  • Tilmes, S., and Coauthors, 2019: Climate forcing and trends of organic aerosols in the Community Earth System Model (CESM2). J. Adv. Model. Earth Syst., 11, 43234351, https://doi.org/10.1029/2019MS001827.

    • Search Google Scholar
    • Export Citation
  • Touma, D., S. Stevenson, F. Lehner, and S. Coats, 2021: Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun., 12, 212, https://doi.org/10.1038/s41467-020-20570-w.

    • Search Google Scholar
    • Export Citation
  • Undorf, S., D. Polson, M. A. Bollasina, Y. Ming, A. Schurer, and G. C. Hegerl, 2018: Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation. J. Geophys. Res. Atmos., 123, 48714889, https://doi.org/10.1029/2017JD027711.

    • Search Google Scholar
    • Export Citation
  • van Marle, M. J. E., and Coauthors, 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev., 10, 33293357, https://doi.org/10.5194/gmd-10-3329-2017.

    • Search Google Scholar
    • Export Citation
  • Wang, K., C. Deser, L. Sun, and R. A. Tomas, 2018: Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophys. Res. Lett., 45, 42644272, https://doi.org/10.1029/2018GL077325.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2021: Incorrect Asian aerosols affecting the attribution and projection of regional climate change in CMIP6 models. npj Climate Atmos. Sci., 4, 2, https://doi.org/10.1038/s41612-020-00159-2.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and H. Tatebe, 2019: Reconciling roles of sulphate aerosol forcing and internal variability in Atlantic multidecadal climate changes. Climate Dyn., 53, 46514665, https://doi.org/10.1007/s00382-019-04811-3.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., M. Eby, M. Kienast, and O. A. Saenko, 2007: Response of the Atlantic meridional overturning circulation to increasing atmospheric CO2: Sensitivity to mean climate state. Geophys. Res. Lett., 34, L05708, https://doi.org/10.1029/2006GL028756.

    • Search Google Scholar
    • Export Citation
  • Wieder, W. R., D. Kennedy, F. Lehner, K. N. Musselman, K. B. Rodgers, N. Rosenbloom, I. R. Simpson, and R. Yamaguchi, 2022: Pervasive alterations to snow-dominated ecosystem functions under climate change. Proc. Natl. Acad. Sci. USA, 119, e2202393119, https://doi.org/10.1073/pnas.2202393119.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., T. H. Dixon, P. G. Myers, J. Bonin, D. Chambers, M. R. van den Broeke, M. H. Ribergaart, and J. Mortensen, 2016: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun., 7, 10525, https://doi.org/10.1038/ncomms10525.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., P. Stier, G. Dagan, and M. Wang, 2021: Anthropogenic aerosols modulated 20th-century Sahel rainfall variability via their impacts on North Atlantic sea surface temperature. Geophys. Res. Lett., 49, e2021GL095629, https://doi.org/10.1029/2021GL095629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1841 1651 169
Full Text Views 985 892 75
PDF Downloads 1149 1040 89