Wind Turning in the Planetary Boundary Layer in CMIP6 Models

Joakim Pyykkö aDepartment of Meteorology, Stockholm University, Stockholm, Sweden
bBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Joakim Pyykkö in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5312-6510
and
Gunilla Svensson aDepartment of Meteorology, Stockholm University, Stockholm, Sweden
bBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
cFLOW Centre, KTH Royal Institute of Technology, Stockholm

Search for other papers by Gunilla Svensson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A set of CMIP6 models is evaluated for the turning of the wind over the planetary boundary layer (PBL) and the corresponding cross-isobaric mass flux. The bulk Richardson number method is used to calculate the height of the PBL to allow for comparisons with a climatology of observed wind-turning angles documented by Lindvall and Svensson based on more than 800 stations in the Integrated Global Radiosonde Archive. Wind-turning angles are found to be underestimated in all models, with the GFDL CM4 model having the closest distribution to the observations. Large, negative cross-isobaric mass fluxes (flow toward higher pressure) are found over high-terrain areas and the North Atlantic storm-track region in all models and the ERA-Interim reanalysis. Bulk Richardson number–derived PBLs are particularly shallow in the Norwegian Earth System Model, medium atmosphere-medium ocean resolution (NorESM2-MM), likely caused by a change in the turbulence and cloud scheme as compared to the CESM2 model that uses the same atmospheric model, leading to small wind-turning angles and cross-isobaric mass fluxes. Using the 850-hPa level as the upper boundary broadens the wind-turning angle distribution and increases the amount of cross-isobaric mass flux for all models. This makes the models closer to the observations, although substantial differences are still present. The assumption of a constant geostrophic wind throughout the PBL possibly affects the calculated mass fluxes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joakim Pyykkö, joakim.pyykko@misu.su.se

Abstract

A set of CMIP6 models is evaluated for the turning of the wind over the planetary boundary layer (PBL) and the corresponding cross-isobaric mass flux. The bulk Richardson number method is used to calculate the height of the PBL to allow for comparisons with a climatology of observed wind-turning angles documented by Lindvall and Svensson based on more than 800 stations in the Integrated Global Radiosonde Archive. Wind-turning angles are found to be underestimated in all models, with the GFDL CM4 model having the closest distribution to the observations. Large, negative cross-isobaric mass fluxes (flow toward higher pressure) are found over high-terrain areas and the North Atlantic storm-track region in all models and the ERA-Interim reanalysis. Bulk Richardson number–derived PBLs are particularly shallow in the Norwegian Earth System Model, medium atmosphere-medium ocean resolution (NorESM2-MM), likely caused by a change in the turbulence and cloud scheme as compared to the CESM2 model that uses the same atmospheric model, leading to small wind-turning angles and cross-isobaric mass fluxes. Using the 850-hPa level as the upper boundary broadens the wind-turning angle distribution and increases the amount of cross-isobaric mass flux for all models. This makes the models closer to the observations, although substantial differences are still present. The assumption of a constant geostrophic wind throughout the PBL possibly affects the calculated mass fluxes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Joakim Pyykkö, joakim.pyykko@misu.su.se
Save
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2007: Boundary layer mechanisms in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 133, 503515, https://doi.org/10.1002/qj.30.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, https://doi.org/10.1256/qj.03.73.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., A. C. M. Beljaars, H. Hersbach, A. Hollingsworth, M. Miller, and D. Vasiljevic, 2005: Wind turning across the marine atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 131, 12331250, https://doi.org/10.1256/qj.04.163.

    • Search Google Scholar
    • Export Citation
  • Chen, G., I. M. Held, and W. A. Robinson, 2007: Sensitivity of the latitude of the surface westerlies to surface friction. J. Atmos. Sci., 64, 28992915, https://doi.org/10.1175/JAS3995.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., and Coauthors, 2022: The EC-Earth3 Earth system model for the Climate Model Intercomparison Project 6. Geosci. Model Dev., 15, 29733020, https://doi.org/10.5194/gmd-2020-446.

    • Search Google Scholar
    • Export Citation
  • Durre, I., and X. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteor. Soc., 89, 12571261, https://doi.org/10.1175/2008BAMS2603.1.

    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Search Google Scholar
    • Export Citation
  • Ellison, T. H., 1956: Atmospheric turbulence. Surveys of Mechanics, G. K. Batchelor and R. M. Davies, Eds., Cambridge University Press, 400–430.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fernandez-Granja, J. A., A. Casanueva, J. Bedia, and J. Fernandez, 2021: Improved atmospheric circulation over Europe by the new generation of CMIP6 Earth system models. Climate Dyn., 56, 35273540, https://doi.org/10.1007/s00382-021-05652-9.

    • Search Google Scholar
    • Export Citation
  • Fiedler, F., and H. A. Panofsky, 1972: The geostrophic drag coefficient and the ‘effective’ roughness length. Quart. J. Roy. Meteor. Soc., 98, 213220, https://doi.org/10.1002/qj.49709841519.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and S. M. Davis, 2020: Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys., 20, 52495268, https://doi.org/10.5194/acp-20-5249-2020.

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., 2011: The angle of the near-surface wind-turning in weakly stable boundary layers. Quart. J. Roy. Meteor. Soc., 137, 700708, https://doi.org/10.1002/qj.789.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hess, G. D., and J. R. Garratt, 2002: Evaluating models of the neutral, barotropic planetary boundary layer using integral measures: Part I. Overview. Bound.-Layer Meteor., 104, 333358, https://doi.org/10.1023/A:1016521215844.

    • Search Google Scholar
    • Export Citation
  • Holton, J., and G. Hakim, 2013: An Introduction to Dynamic Meteorology. International Geophysics Series, Vol. 88, Academic Press, 532 pp.

  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, https://doi.org/10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2391 pp., https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport.pdf.

  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Lindvall, J., and G. Svensson, 2019: Wind turning in the atmospheric boundary layer over land. Quart. J. Roy. Meteor. Soc., 145, 30743088, https://doi.org/10.1002/qj.3605.

    • Search Google Scholar
    • Export Citation
  • Lindvall, J., G. Svensson, and R. Caballero, 2017: The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5). Climate Dyn., 48, 37413758, https://doi.org/10.1007/s00382-016-3299-9.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., 2011: Advancing closures for stably stratified turbulence in global atmospheric models. ECMWF GABLS Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, United Kingdom, ECMWF and WCRP, 63–74.

  • Norris, J., A. Hall, J. Neelin, C. Thackeray, and D. Chen, 2021: Evaluation of the tail of the probability distribution of daily and subdaily precipitation in CMIP6 models. J. Climate, 34, 27012721, https://doi.org/10.1175/JCLI-D-20-0182.1.

    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst., 5, 117133, https://doi.org/10.1002/jame.20013.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Y. Zhang, A. Beljaars, J.-C. Golaz, A. R. Jacobson, and B. Medeiros, 2012: Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res., 117, D17106, https://doi.org/10.1029/2012JD018143.

    • Search Google Scholar
    • Export Citation
  • Seland, Ø., and Coauthors, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev., 13, 61656200, https://doi.org/10.5194/gmd-13-6165-2020.

    • Search Google Scholar
    • Export Citation
  • Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Syst., 11, 45134558, https://doi.org/10.1029/2019MS001739.

    • Search Google Scholar
    • Export Citation
  • Shen, C., J. Zha, D. Zhao, J. Wu, W. Fan, M. Yang, and Z. Li, 2021: Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs. Environ. Res. Lett., 16, 084039, https://doi.org/10.1088/1748-9326/ac1378.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., J. T. Bacmeister, I. Sandu, and M. J. Rodwell, 2018: Why do modeled and observed surface wind stress climatologies differ in the trade wind regions? J. Climate, 31, 491513, https://doi.org/10.1175/JCLI-D-17-0255.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and Coauthors, 2020: An evaluation of the large-scale atmospheric circulation and its variability in CESM2 and other CMIP models. J. Geophys. Res. Atmos., 125, e2020JD032835, https://doi.org/10.1029/2020JD032835.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Analysis of model results for the turning of the wind and related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132, 261277, https://doi.org/10.1007/s10546-009-9395-1.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and J. Lindvall, 2015: Evaluation of near-surface variables and the vertical structure of the boundary layer in CMIP5 models. J. Climate, 28, 52335253, https://doi.org/10.1175/JCLI-D-14-00596.1.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CANESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Search Google Scholar
    • Export Citation
  • Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev., 12, 27272765, https://doi.org/10.5194/gmd-12-2727-2019.

    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Search Google Scholar
    • Export Citation
  • Troen, I., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426, https://doi.org/10.1002/qj.49712555904.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, https://doi.org/10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., K. Wang, D. Chen, J. Li, and R. Dickinson, 2019: Increase in surface friction dominates the observed surface wind speed decline during 1973–2014 in the Northern Hemisphere lands. J. Climate, 32, 74217435, https://doi.org/10.1175/JCLI-D-18-0691.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 363 363 17
Full Text Views 174 174 37
PDF Downloads 158 158 9