Stratosphere–Troposphere Coupling during Sudden Stratospheric Warmings with Different North Atlantic Jet Response

Verónica Martínez-Andradas aDepartamento Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
bInstituto de Geociencias, UCM-CSIC, Madrid, Spain

Search for other papers by Verónica Martínez-Andradas in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7431-1069
,
Alvaro de la Cámara aDepartamento Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Alvaro de la Cámara in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8831-4789
, and
Pablo Zurita-Gotor aDepartamento Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
bInstituto de Geociencias, UCM-CSIC, Madrid, Spain

Search for other papers by Pablo Zurita-Gotor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6873-7645
Restricted access

Abstract

Sudden stratospheric warmings (SSWs) are extreme disruptions of the wintertime polar vortex that can alter the tropospheric weather for over 2 months. However, the reasons why only some SSWs have a tropospheric impact are not yet clear. This study analyses the tropospheric impact of SSWs over the Atlantic region as measured by the latitudinal displacement of the North Atlantic eddy-driven jet following SSWs. We use reanalysis data for the period 1950–2020 to examine differences in the stratospheric and tropospheric circulation for SSWs with an equatorward (EQ) or a poleward (POLE) shift. Our results show a stronger and more persistent Northern Annular Mode (NAM) signal in the lower stratosphere for EQ than for POLE, beginning 2 weeks before the onset date. In the troposphere, we find precursory signals of the Atlantic jet behavior over Siberia, consistent with previous studies, and also over the central North Pacific and central Europe. In particular, our results suggest that the noncanonical poleward jet shift response to SSWs is in part modulated by circulation anomalies over the central North Pacific, and that these are in turn connected to the cold phase of El Niño–Southern Oscillation. Further analysis of the enhanced predictability given by these precursors suggests that the sign of the lower-stratospheric NAM and the geopotential anomalies over the central North Pacific significantly affect the probability of having an EQ or POLE response of the Atlantic jet.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. Martínez-Andradas, vemart05@ucm.es

Abstract

Sudden stratospheric warmings (SSWs) are extreme disruptions of the wintertime polar vortex that can alter the tropospheric weather for over 2 months. However, the reasons why only some SSWs have a tropospheric impact are not yet clear. This study analyses the tropospheric impact of SSWs over the Atlantic region as measured by the latitudinal displacement of the North Atlantic eddy-driven jet following SSWs. We use reanalysis data for the period 1950–2020 to examine differences in the stratospheric and tropospheric circulation for SSWs with an equatorward (EQ) or a poleward (POLE) shift. Our results show a stronger and more persistent Northern Annular Mode (NAM) signal in the lower stratosphere for EQ than for POLE, beginning 2 weeks before the onset date. In the troposphere, we find precursory signals of the Atlantic jet behavior over Siberia, consistent with previous studies, and also over the central North Pacific and central Europe. In particular, our results suggest that the noncanonical poleward jet shift response to SSWs is in part modulated by circulation anomalies over the central North Pacific, and that these are in turn connected to the cold phase of El Niño–Southern Oscillation. Further analysis of the enhanced predictability given by these precursors suggests that the sign of the lower-stratospheric NAM and the geopotential anomalies over the central North Pacific significantly affect the probability of having an EQ or POLE response of the Atlantic jet.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: V. Martínez-Andradas, vemart05@ucm.es

Supplementary Materials

    • Supplemental Materials (PDF 0.8102 MB)
Save
  • Afargan-Gerstman, H., and D. I. Domeisen, 2020: Pacific modulation of the North Atlantic storm track response to sudden stratospheric warming events. Geophys. Res. Lett., 47, e2019GL085007, https://doi.org/10.1029/2019GL085007.

    • Search Google Scholar
    • Export Citation
  • Afargan-Gerstman, H., B. Jiménez-Esteve, and D. I. Domeisen, 2022: On the relative importance of stratospheric and tropospheric drivers for the North Atlantic jet response to sudden stratospheric warming events. J. Climate, 35, 64536467, https://doi.org/10.1175/JCLI-D-21-0680.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and D. W. Thompson, 2009: A critical comparison of stratosphere–troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 16611672, https://doi.org/10.1002/qj.479.

    • Search Google Scholar
    • Export Citation
  • Birner, T., and J. R. Albers, 2017: Sudden stratospheric warmings and anomalous upward wave activity flux. SOLA, 13A, 812, https://doi.org/10.2151/sola.13A-002.

    • Search Google Scholar
    • Export Citation
  • Black, R. X., and B. A. McDaniel, 2004: Diagnostic case studies of the northern annular mode. J. Climate, 17, 39904004, https://doi.org/10.1175/1520-0442(2004)017<3990:DCSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and L. M. Polvani, 2011: El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett., 38, L13807, https://doi.org/10.1029/2011GL048084.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., J. P. Sjoberg, D. J. Seidel, and K. H. Rosenlof, 2017: A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9, 6376, https://doi.org/10.5194/essd-9-63-2017.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., and Coauthors, 2019: Sub-seasonal predictability and the stratosphere. Sub-Seasonal to Seasonal Prediction, A. W. Robertson and F. Vitart, Eds., Elsevier, 223–241, https://doi.org/10.1016/B978-0-12-811714-9.00011-5.

  • Camp, C., and K.-K. Tung, 2007: Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34, L04809, https://doi.org/10.1029/2006GL028521.

    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and H.-F. Graf, 2003: North Pacific–North Atlantic relationships under stratospheric control? J. Geophys. Res., 108, 4036, https://doi.org/10.1029/2002JD002754.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., L. Ferranti, and R. W. Lee, 2018: The influence of the stratospheric state on North Atlantic weather regimes. Quart. J. Roy. Meteor. Soc., 144, 11401151, https://doi.org/10.1002/qj.3280.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., P. Hitchcock, and I. R. Simpson, 2023: Dynamics and impacts of the North Pacific eddy-driven jet response to sudden stratospheric warmings. J. Climate, 36, 865884, https://doi.org/10.1175/JCLI-D-22-0300.1.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017: Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., 74, 28572877, https://doi.org/10.1175/JAS-D-17-0136.1.

    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., T. Birner, and J. R. Albers, 2019: Are sudden stratospheric warmings preceded by anomalous tropospheric wave activity? J. Climate, 32, 71737189, https://doi.org/10.1175/JCLI-D-19-0269.1.

    • Search Google Scholar
    • Export Citation
  • Díaz-Durán, A., E. Serrano, B. Ayarzagüena, M. Abalos, and A. de la Cámara, 2017: Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors. Climate Dyn., 49, 34733491, https://doi.org/10.1007/s00382-017-3524-1.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The teleconnection of El Niño Southern Oscillation to the stratosphere. Rev. Geophys., 57, 547, https://doi.org/10.1029/2018RG000596.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., C. M. Grams, and L. Papritz, 2020a: The role of North Atlantic–European weather regimes in the surface impact of sudden stratospheric warming events. Wea. Climate Dyn., 1, 373388, https://doi.org/10.5194/wcd-1-373-2020.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere–troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2015: The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J. Climate, 28, 39573976, https://doi.org/10.1175/JCLI-D-14-00552.1.

    • Search Google Scholar
    • Export Citation
  • Eichelberger, S. J., and D. L. Hartmann, 2007: Zonal jet structure and the leading mode of variability. J. Climate, 20, 51495163, https://doi.org/10.1175/JCLI4279.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., A. Butler, D. Waugh, M. Hurwitz, and L. M. Polvani, 2012: Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res., 117, D19106, https://doi.org/10.1029/2012jd017777.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., C. Orbe, and L. M. Polvani, 2009: Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett., 36, L24801, https://doi.org/10.1029/2009GL040913.

    • Search Google Scholar
    • Export Citation
  • Hall, R. J., D. M. Mitchell, W. J. Seviour, and C. J. Wright, 2021: Tracking the stratosphere-to-surface impact of sudden stratospheric warmings. J. Geophys. Res. Atmos., 126, e2020JD033 881, https://doi.org/10.1029/2020JD033881.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, and G. L. Manney, 2013a: Statistical characterization of Arctic polar-night jet oscillation events. J. Climate, 26, 20962116, https://doi.org/10.1175/JCLI-D-12-00202.1.

    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., T. G. Shepherd, M. Taguchi, S. Yoden, and S. Noguchi, 2013b: Lower-stratospheric radiative damping and polar-night jet oscillation events. J. Atmos. Sci., 70, 13911408, https://doi.org/10.1175/JAS-D-12-0193.1.

    • Search Google Scholar
    • Export Citation
  • Iza, M., N. Calvo, and E. Manzini, 2016: The stratospheric pathway of La Niña. J. Climate, 29, 88998914, https://doi.org/10.1175/JCLI-D-16-0230.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez-Esteve, B., and D. I. Domeisen, 2018: The tropospheric pathway of the ENSO–North Atlantic teleconnection. J. Climate, 31, 45634584, https://doi.org/10.1175/JCLI-D-17-0716.1.

    • Search Google Scholar
    • Export Citation
  • Jucker, M., 2016: Are sudden stratospheric warmings generic? Insights from an idealized GCM. J. Atmos. Sci., 73, 50615080, https://doi.org/10.1175/JAS-D-15-0353.1.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., 2018: Predictability of sudden stratospheric warmings in the ECMWF extended-range forecast system. Mon. Wea. Rev., 146, 10631075, https://doi.org/10.1175/MWR-D-17-0317.1.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., P. Hitchcock, D. H. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Quart. J. Roy. Meteor. Soc., 143, 14591470, https://doi.org/10.1002/qj.3017.

    • Search Google Scholar
    • Export Citation
  • Lawrence, Z. D., and Coauthors, 2022: Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems. Wea. Climate Dyn., 3, 9771001, https://doi.org/10.5194/wcd-3-977-2022.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 94310 951, https://doi.org/10.1002/2015GL066754.

    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., G. I. Masukwedza, P. Hitchcock, and I. R. Simpson, 2020: A regime perspective on the North Atlantic eddy-driven jet response to sudden stratospheric warmings. J. Climate, 33, 39013917, https://doi.org/10.1175/JCLI-D-19-0702.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, and A. J. Charlton-Perez, 2011: The structure and evolution of the stratospheric vortex in response to natural forcings. J. Geophys. Res., 116, D15110, https://doi.org/10.1029/2011JD015788.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, K. I., and K. Yamazaki, 2006: What kind of stratospheric sudden warming propagates to the troposphere? Geophys. Res. Lett., 33, L04801, https://doi.org/10.1029/2005GL024784.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 49024909, https://doi.org/10.1175/JCLI-3247.1.

    • Search Google Scholar
    • Export Citation
  • Runde, T., M. Dameris, H. Garny, and D. Kinnison, 2016: Classification of stratospheric extreme events according to their downward propagation to the troposphere. Geophys. Res. Lett., 43, 66656672, https://doi.org/10.1002/2016GL069569.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2022: Long-range prediction and the stratosphere. Atmos. Chem. Phys., 22, 26012623, https://doi.org/10.5194/acp-22-2601-2022.

    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98102, https://doi.org/10.1038/ngeo1698.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, https://doi.org/10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015a: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, https://doi.org/10.1088/1748-9326/10/10/104007.

    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2015b: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Quart. J. Roy. Meteor. Soc., 141, 9871003, https://doi.org/10.1002/qj.2432.

    • Search Google Scholar
    • Export Citation
  • Van Loon, H., and K. Labitzke, 1987: The southern oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev., 115, 357369, https://doi.org/10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, V. Aquila, and L. D. Oman, 2019: The downward influence of sudden stratospheric warmings: Association with tropospheric precursors. J. Climate, 32, 85108, https://doi.org/10.1175/JCLI-D-18-0053.1.

    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, J. Cohen, M. Jucker, and J. Rao, 2021: The impact of split and displacement sudden stratospheric warmings on the troposphere. J. Geophys. Res. Atmos., 126, e2020JD033989, https://doi.org/10.1029/2020JD033989.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., W. Chen, and L. Song, 2022: Two leading modes in the evolution of major sudden stratospheric warmings and their distinctive surface influence. Geophys. Res. Lett., 49, e2021GL095431, https://doi.org/10.1029/2021GL095431.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 633 457 11
Full Text Views 175 128 5
PDF Downloads 213 143 11