Stochastic Bifurcation of the North Atlantic Circulation under a Midrange Future Climate Scenario with the NASA-GISS ModelE

Anastasia Romanou aNASA Goddard Institute for Space Studies, New York, New York
bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Anastasia Romanou in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5241-4772
,
David Rind aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by David Rind in
Current site
Google Scholar
PubMed
Close
,
Jeff Jonas aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Jeff Jonas in
Current site
Google Scholar
PubMed
Close
,
Ron Miller aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Ron Miller in
Current site
Google Scholar
PubMed
Close
,
Maxwell Kelley aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Maxwell Kelley in
Current site
Google Scholar
PubMed
Close
,
Gary Russell aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gary Russell in
Current site
Google Scholar
PubMed
Close
,
Clara Orbe aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
,
Larissa Nazarenko cClimate Systems Research, Columbia University, New York, New York

Search for other papers by Larissa Nazarenko in
Current site
Google Scholar
PubMed
Close
,
Rebecca Latto bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Rebecca Latto in
Current site
Google Scholar
PubMed
Close
, and
Gavin A. Schmidt aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gavin A. Schmidt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A 10-member ensemble simulation with the NASA GISS-E2-1-G climate model shows a clear bifurcation in the Atlantic meridional overturning circulation (AMOC) strength under the SSP2–4.5 extended scenario. At 26°N, the bifurcation leads to 8 strong AMOC and 2 much weaker AMOC states, while at 48°N, it leads to 8 stable AMOC-on and 2 nearly AMOC-off states, the latter lasting approximately 800 years. A variety of fully coupled models have demonstrated tipping points in AMOC through hosing experiments, i.e., prescribing sufficient freshwater inputs in the subpolar North Atlantic. In the GISS simulations, there are no external freshwater perturbations. The bifurcation arises freely in the coupled system and is the result of stochastic variability (noise-induced bifurcation) associated with sea ice transport and melting in the Irminger Sea after a slowing of the greenhouse gas forcing. While the AMOC strength follows the near shutdown of the Labrador Sea deep convection initially, the Irminger Sea salinity and deep mixing determine the timing of the AMOC recovery or near collapse at 48°N, which varies widely across the ensemble members. Other feedbacks such as ice-albedo, ice-evaporation, E − P, and the overturning salt-advection feedback play a secondary role that may enhance or reduce the primary mechanism which is ice melt. We believe this is the first time that a coupled climate model has shown such a bifurcation across an initial condition ensemble and might imply that there is a chance for significant and prolonged AMOC slow down due to internal variability of the system.

Significance Statement

We believe this is the first time that divergent AMOC behavior has been reported for an ensemble of Earth system model simulations using identical climate forcing and no prescribed freshwater perturbations. This response is a manifestation of noise-induced bifurcation, enhanced by feedbacks, revealing the role stochastic (or intrinsic) variability may play in AMOC stability.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anastasia Romanou, anastasia.romanou@nasa.gov

Abstract

A 10-member ensemble simulation with the NASA GISS-E2-1-G climate model shows a clear bifurcation in the Atlantic meridional overturning circulation (AMOC) strength under the SSP2–4.5 extended scenario. At 26°N, the bifurcation leads to 8 strong AMOC and 2 much weaker AMOC states, while at 48°N, it leads to 8 stable AMOC-on and 2 nearly AMOC-off states, the latter lasting approximately 800 years. A variety of fully coupled models have demonstrated tipping points in AMOC through hosing experiments, i.e., prescribing sufficient freshwater inputs in the subpolar North Atlantic. In the GISS simulations, there are no external freshwater perturbations. The bifurcation arises freely in the coupled system and is the result of stochastic variability (noise-induced bifurcation) associated with sea ice transport and melting in the Irminger Sea after a slowing of the greenhouse gas forcing. While the AMOC strength follows the near shutdown of the Labrador Sea deep convection initially, the Irminger Sea salinity and deep mixing determine the timing of the AMOC recovery or near collapse at 48°N, which varies widely across the ensemble members. Other feedbacks such as ice-albedo, ice-evaporation, E − P, and the overturning salt-advection feedback play a secondary role that may enhance or reduce the primary mechanism which is ice melt. We believe this is the first time that a coupled climate model has shown such a bifurcation across an initial condition ensemble and might imply that there is a chance for significant and prolonged AMOC slow down due to internal variability of the system.

Significance Statement

We believe this is the first time that divergent AMOC behavior has been reported for an ensemble of Earth system model simulations using identical climate forcing and no prescribed freshwater perturbations. This response is a manifestation of noise-induced bifurcation, enhanced by feedbacks, revealing the role stochastic (or intrinsic) variability may play in AMOC stability.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anastasia Romanou, anastasia.romanou@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 24.818 MB)
Save
  • Bassis, J. N., S. V. Petersen, and L. Mac Cathles, 2017: Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature, 542, 332334, https://doi.org/10.1038/nature21069.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., M. Angeloni, S. Corti, and J. vonHardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., and W. H. Lipscomb, 1999: An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104, 15 66915 677, https://doi.org/10.1029/1999JC900100.

    • Search Google Scholar
    • Export Citation
  • Blunier, T., and E. J. Brook, 2001: Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291, 109112, https://doi.org/10.1126/science.291.5501.109.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., and T. Koenigk, 2016: Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Climate Dyn., 46, 28632882, https://doi.org/10.1007/s00382-015-2736-5.

    • Search Google Scholar
    • Export Citation
  • Broecker, W. S., 2000: Abrupt climate change: Causal constraints provided by the paleoclimate record. Earth-Sci. Rev., 51, 137154, https://doi.org/10.1016/S0012-8252(00)00019-2.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304, https://doi.org/10.1038/323301a0.

    • Search Google Scholar
    • Export Citation
  • Bryden, H., 2011: South Atlantic overturning circulation at 24°S. J. Mar. Res., 69, 3855.

  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, and G. Feulner, 2021: Reply to comment on ‘On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming.’ Environ. Res. Lett., 16, 038002, https://doi.org/10.1088/1748-9326/abc776.

    • Search Google Scholar
    • Export Citation
  • Castellana, D., and H. A. Dijkstra, 2020: Noise-induced transitions of the Atlantic meridional overturning circulation in CMIP5 models. Sci. Rep., 10, 20040, https://doi.org/10.1038/s41598-020-76930-5.

    • Search Google Scholar
    • Export Citation
  • Chafik, L., and N. P. Holliday, 2022: Rapid communication of upper-ocean salinity anomaly to deep waters of the Iceland Basin indicates an AMOC short-cut. Geophys. Res. Lett., 49, e2021GL097570, https://doi.org/10.1029/2021GL097570.

    • Search Google Scholar
    • Export Citation
  • Clark, P. U., S. J. Marshall, G. K. C. Clarke, S. W. Hostetler, J. M. Licciardi, and J. T. Teller, 2001: Freshwater forcing of abrupt climate change during the last glaciation. Science, 293, 283287, https://doi.org/10.1126/science.1062517.

    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Search Google Scholar
    • Export Citation
  • de Abreu, L., N. J. Shackleton, J. Schoenfeld, M. Hall, and M. Chapman, 2003: Millennial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Mar. Geol., 196, 120, https://doi.org/10.1016/S0025-3227(03)00046-X.

    • Search Google Scholar
    • Export Citation
  • de Vries, P., and S. L. Weber, 2005: The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation. Geophys. Res. Lett., 32, L09606, https://doi.org/10.1029/2004GL021450.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S. S., S. L. Weber, and E. van der Swaluw, 2011: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Climate Dyn., 37, 15751586, https://doi.org/10.1007/s00382-010-0930-z.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Garzoli, S. L., M. O. Baringer, S. Dong, R. C. Perez, and Q. Yao, 2013: South Atlantic meridional fluxes. Deep-Sea Res. I, 71, 2132, https://doi.org/10.1016/j.dsr.2012.09.003.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., 2018: A commentary on the Atlantic meridional overturning circulation stability in climate models. Ocean Modell., 122, 5766, https://doi.org/10.1016/j.ocemod.2017.12.006.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grégorio, S., T. Penduff, G. Sérazin, J.-M. Molines, B. Barnier, and J. Hirschi, 2015: Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales. J. Phys. Oceanogr., 45, 19291946, https://doi.org/10.1175/JPO-D-14-0163.1.

    • Search Google Scholar
    • Export Citation
  • Gu, S., Z. Liu, and L. Wu, 2020: Time scale dependence of the meridional coherence of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 125, e2019JC015838, https://doi.org/10.1029/2019JC015838.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, L. Allison, J. Gregory, T. Woollings, H. Pohlmann, and B. de Cuevas, 2011: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys. Res. Lett., 38, L10605, https://doi.org/10.1029/2011GL047208.

    • Search Google Scholar
    • Export Citation
  • Heuzé, C., 2021: Antarctic bottom water and North Atlantic deep water in CMIP6 models. Ocean Sci., 17, 5990, https://doi.org/10.5194/os-17-59-2021.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J. J.-M., and Coauthors, 2020: The Atlantic meridional overturning circulation in high-resolution models. J. Geophys. Res. Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, M. Eby, and A. J. Weaver, 2001: The role of ice-ocean interactions in the variability of the North Atlantic thermohaline circulation. J. Climate, 14, 656675, https://doi.org/10.1175/1520-0442(2001)014%3C0656:TROIOI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., C. M. Bitz, L.-B. Tremblay, and D. A. Bailey, 2008: The role of natural versus forced change in future rapid summer Arctic ice loss. Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications, Geophys. Monogr., Vol. 180, Amer. Geophys. Union, 133–150, https://doi.org/10.1029/180GM10.

  • Hu, A., and Coauthors, 2012: Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proc. Natl. Acad. Sci. USA, 109, 64176422, https://doi.org/10.1073/pnas.1116014109.

    • Search Google Scholar
    • Export Citation
  • Huisman, S. E., M. den Toom, H. A. Dijkstra, and S. Drijfhout, 2010: An indicator of the multiple equilibria regime of the Atlantic meridional overturning circulation. J. Phys. Oceanogr., 40, 551567, https://doi.org/10.1175/2009JPO4215.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp.

  • Jackson, L. C., and R. A. Wood, 2018: Hysteresis and resilience of the AMOC in an eddy-permitting GCM. Geophys. Res. Lett., 45, 85478556, https://doi.org/10.1029/2018GL078104.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., L.-P. Nadeau, and T. M. Merlis, 2018: Transient versus equilibrium response of the ocean’s overturning circulation to warming. J. Climate, 31, 51475163, https://doi.org/10.1175/JCLI-D-17-0797.1.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic-north Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031, https://doi.org/10.1175/JCLI3462.1.

    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Kieke, D., M. Rhein, L. Stramma, W. Smethie, D. LeBel, and W. Zenk, 2006: Changes in the CFC inventories and formation rates of upper Labrador Sea Water, 1997–2001. J. Phys. Oceanogr., 36, 6486, https://doi.org/10.1175/JPO2814.1.

    • Search Google Scholar
    • Export Citation
  • Kilbourne, K. H., and Coauthors, 2022: Atlantic circulation change still uncertain. Nat. Geosci., 15, 165167, https://doi.org/10.1038/s41561-022-00896-4.

    • Search Google Scholar
    • Export Citation
  • Klus, A., M. Prange, V. Varma, L. Bruno Tremblay, and M. Schulz, 2018: Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation. Climate Past, 14, 11651178, https://doi.org/10.5194/cp-14-1165-2018.

    • Search Google Scholar
    • Export Citation
  • Kobashi, T., J. Severinghaus, and M. Barnola, 2008: 4 ± 1°C abrupt warming 11,270 yr ago identified from trapped air in Greenland Ice. Earth Planet. Sci. Lett., 268, 397407, https://doi.org/10.1016/j.epsl.2008.01.032.

    • Search Google Scholar
    • Export Citation
  • Koenigk, T., U. Mikolajewicz, H. Haak, and J. Jungclaus, 2006: Variability of Fram Strait sea ice export: Causes, impacts and feedbacks in a coupled climate model. Climate Dyn., 26, 1734, https://doi.org/10.1007/s00382-005-0060-1.

    • Search Google Scholar
    • Export Citation
  • Kuznetsova, D. A., and I. L. Bashmachnikov, 2021: On the mechanisms of variability of the Atlantic Meridional Overturning Circulation (AMOC). Oceanology, 61, 803814, https://doi.org/10.1134/S0001437021060072.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • LeGrande, A. N., G. A. Schmidt, D. T. Shindell, C. V. Field, R. L. Miller, D. M. Koch, G. Faluvegi, and G. Hoffmann, 2006: Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. USA, 103, 837842, https://doi.org/10.1073/pnas.0510095103.

    • Search Google Scholar
    • Export Citation
  • Lenton, T., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber, 2008: Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. USA, 105, 17861793, https://doi.org/10.1073/pnas.0705414105.

    • Search Google Scholar
    • Export Citation
  • Leroux, S., T. Penduff, L. Bessières, J.-M. Molines, J.-M. Brankart, G. Sérazin, B. Barnier, and L. Terray, 2018: Intrinsic and atmospherically forced variability of the AMOC: Insights from a large-ensemble ocean hindcast. J. Climate, 31, 11831203, https://doi.org/10.1175/JCLI-D-17-0168.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., A. Fedorov, and W. Liu, 2021: AMOC stability and diverging response to Arctic sea ice decline in two climate models. J. Climate, 34, 54435460, https://doi.org/10.1175/JCLI-D-20-0572.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, Z. Liu, and J. Zhu, 2017: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate. Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666.

    • Search Google Scholar
    • Export Citation
  • Lobelle, D., F. Sévellec, C. Beaulieu, V. Livina, and E. Frajka-williams, 2022: AMOC trends from 1850 to 2100 at interannual to multi-decadal time scales corroborated by changes in salinity budget corroborated by changes in salinity budget. Research Square, https://doi.org/10.21203/rs.3.rs-1231837/v1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • Lynch-Stieglitz, J., 2017: The Atlantic meridional overturning circulation and abrupt climate change. Annu. Rev. Mar. Sci., 9, 83104, https://doi.org/10.1146/annurev-marine-010816-060415.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1988: Two stable equilibria of a coupled ocean–atmosphere model. J. Climate, 1, 841866, https://doi.org/10.1175/1520-0442(1988)001<0841:TSEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7, 523, https://doi.org/10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, A. Romanou, M. Kelley, and A. Leboissetier, 2017: The dependence of the ocean’s MOC on mesoscale eddy diffusivities: A model study. Ocean Modell., 111, 18, https://doi.org/10.1016/j.ocemod.2017.01.001.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. D., and Coauthors, 2015: Measuring the Atlantic meridional overturning circulation at 26°N. Prog. Oceanogr., 130, 91111, https://doi.org/10.1016/j.pocean.2014.10.006.

    • Search Google Scholar
    • Export Citation
  • Mecking, J. V., S. S. Drijfhout, L. C. Jackson, and T. Graham, 2016: Stable AMOC off state in an eddy-permitting coupled climate model. Climate Dyn., 47, 24552470, https://doi.org/10.1007/s00382-016-2975-0.

    • Search Google Scholar
    • Export Citation
  • Mecking, J. V., S. S. Drijfhout, L. C. Jackson, and M. B. Andrews, 2017: The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus, 69A, 1299910, https://doi.org/10.1080/16000870.2017.1299910.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2019: The Shared Socio-economic Pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-2019-222.

    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 30633080, https://doi.org/10.1007/s00382-017-3793-8.

    • Search Google Scholar
    • Export Citation
  • Menary, M. B., L. C. Jackson, and M. S. Lozier, 2020: Reconciling the relationship between the AMOC and Labrador Sea in OSNAP observations and climate models. Geophys. Res. Lett., 47, e2020GL089793, https://doi.org/10.1029/2020GL089793.

    • Search Google Scholar
    • Export Citation
  • Menviel, L., A. Timmermann, T. Friedrich, and M. H. England, 2014: Hindcasting the continuum of Dansgaard-Oeschger variability: Mechanisms, patterns and timing. Climate Past, 10, 6377, https://doi.org/10.5194/cp-10-63-2014.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2021: CMIP6 historical simulations (1850–2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, e2019MS002034, https://doi.org/10.1029/2019MS002034.

    • Search Google Scholar
    • Export Citation
  • Moffa-Sanchez, P., and Coauthors, 2019: Variability in the northern North Atlantic and Arctic oceans across the last two millennia: A review. Paleoceanogr. Paleoclimatol., 34, 13991436, https://doi.org/10.1029/2018PA003508.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, L. S., and Coauthors, 2022: Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, e2021MS002871, https://doi.org/10.1029/2021MS002871.

    • Search Google Scholar
    • Export Citation
  • Petit, T., M. S. Lozier, S. A. Josey, and S. A. Cunningham, 2020: Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing. Geophys. Res. Lett., 47, e2020GL091028, https://doi.org/10.1029/2020GL091028.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227, https://doi.org/10.1175/JPO3178.1.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second order moments. J. Geophys. Res., 91, 66716681, https://doi.org/10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811, https://doi.org/10.1007/s003820050144.

    • Search Google Scholar
    • Export Citation
  • Ren, L., and S. C. Riser, 2009: Seasonal salt budget in the northeast Pacific Ocean. J. Geophys. Res., 114, C12004, https://doi.org/10.1029/2009JC005307.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2011: Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II, 58, 18191832, https://doi.org/10.1016/j.dsr2.2010.10.061.

    • Search Google Scholar
    • Export Citation
  • Rind, D., P. Demenocal, G. L. Russell, S. Sheth, D. Collins, G. Schmidt, and J. Teller, 2001: Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic deep water response. J. Geophys. Res., 106, 27 33527 353, https://doi.org/10.1029/2000JD000070.

    • Search Google Scholar
    • Export Citation
  • Rind, D., G. A. Schmidt, J. Jonas, R. Miller, L. Nazarenko, M. Kelley, and J. Romanski, 2018: Multicentury instability of the Atlantic meridional circulation in rapid warming simulations with GISS ModelE2. J. Geophys. Res. Atmos., 123, 63316355, https://doi.org/10.1029/2017JD027149.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., J. Marshall, M. Kelley, and J. Scott, 2017: Role of the ocean’s AMOC in setting the uptake efficiency of transient tracers. Geophys. Res. Lett., 44, 55905598, https://doi.org/10.1002/2017GL072972.

    • Search Google Scholar
    • Export Citation
  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11, 131149, https://doi.org/10.1016/0079-6611(82)90006-4.

  • Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmosphere-ocean model for transient climate change studies. Atmos.–Ocean, 33, 683730, https://doi.org/10.1080/07055900.1995.9649550.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and A. N. LeGrande, 2005: The goldilocks abrupt climate change event. Quat. Sci. Rev., 24, 11091110, https://doi.org/10.1016/j.quascirev.2005.01.015.

    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., C. M. Bitz, U. Mikolajewicz, and L.-B. Tremblay, 2004: Ice-ocean boundary conditions for coupled models. Ocean Modell., 7, 5974, https://doi.org/10.1016/S1463-5003(03)00030-1.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., L. Stramma, B. S. Giese, and R. Zantopp, 2009: Labrador Sea convection and subpolar North Atlantic deep water export in the soda assimilation model. Deep-Sea Res. I, 56, 926938, https://doi.org/10.1016/j.dsr.2009.01.001.

    • Search Google Scholar
    • Export Citation
  • Sgubin, G., D. Swingedouw, S. Drijfhout, S. Hagemann, and E. Robertson, 2015: Multimodel analysis on the response of the AMOC under an increase of radiative forcing and its symmetrical reversal. Climate Dyn., 45, 14291450, https://doi.org/10.1007/s00382-014-2391-2.

    • Search Google Scholar
    • Export Citation
  • Sgubin, G., D. Swingedouw, S. Drijfhout, Y. Mary, and A. Bennabi, 2017: Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun., 8, 14375, https://doi.org/10.1038/ncomms14375.

    • Search Google Scholar
    • Export Citation
  • Sijp, W. P., M. H. England, and J. M. Gregory, 2012: Precise calculations of the existence of multiple AMOC equilibria in coupled climate models. Part I: Equilibrium states. J. Climate, 25, 282298, https://doi.org/10.1175/2011JCLI4245.1.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, https://doi.org/10.1175/1520-0485(2004)034%3C1197:BCAWTI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, https://doi.org/10.3402/tellusa.v13i2.9491.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 13651387, https://doi.org/10.1175/JCLI3689.1.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., P. Braconnot, P. Delecluse, E. Guilyardi, and O. Marti, 2007: Quantifying the AMOC feedbacks during a 2 × CO2 stabilization experiment with land-ice melting. Climate Dyn., 29, 521534, https://doi.org/10.1007/s00382-007-0250-0.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., A. Bily, C. Esquerdo, L. F. Borchert, G. Sgubin, J. Mignot, and M. Menary, 2021: On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models. Ann. N. Y. Acad. Sci., 1504, 187201, https://doi.org/10.1111/nyas.14659.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226, https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, M. D., and A. V. Fedorov, 2019: Mechanisms and impacts of a partial AMOC recovery under enhanced freshwater forcing. Geophys. Res. Lett., 46, 33083316, https://doi.org/10.1029/2018GL080442.

    • Search Google Scholar
    • Export Citation
  • Thornalley, D. J. R., and Coauthors, 2018: Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature, 556, 227230, https://doi.org/10.1038/s41586-018-0007-4.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and A. Solomon, 1994: The global heat balance: Heat transports in the atmosphere and ocean. Climate Dyn., 10, 107134, https://doi.org/10.1007/BF00210625.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and Coauthors, 2012: Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett., 39, L20709, https://doi.org/10.1029/2012GL053763.

    • Search Google Scholar
    • Export Citation
  • Weber, S. L., and Coauthors, 2007: The modern and glacial overturning circulation in the Atlantic Ocean in PMIP coupled model simulations. Climate Past, 3, 5164, https://doi.org/10.5194/cp-3-51-2007.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., and Coauthors, 2019: Stability of the Atlantic meridional overturning circulation: A review and synthesis. J. Geophys. Res. Oceans, 124, 53365375, https://doi.org/10.1029/2019JC015083.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. Cheng, O. A. Garuba, A. Hu, and B. T. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009: Enhanced production of Labrador Sea water in 2008. Geophys. Res. Lett., 36, L01606, https://doi.org/10.1029/2008GL036162.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and D. Rothrock, 2000: Modeling Arctic sea ice with an efficient plastic solution. J. Geophys. Res., 105, 33253338, https://doi.org/10.1029/1999JC900320.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., G. Knorr, G. Lohmann, and S. Barker, 2017: Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nat. Geosci., 10, 518523, https://doi.org/10.1038/ngeo2974.

    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, and M. Buckley, 2019: How is meridional coherence maintained in the lower limb of the Atlantic meridional overturning circulation? Geophys. Res. Lett., 46, 244252, https://doi.org/10.1029/2018GL080958.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1244 712 40
Full Text Views 609 319 23
PDF Downloads 696 356 22