Geostrophic and Mesoscale Eddy Contributions to the Atlantic Meridional Overturning Circulation Decline under CO2 Increase in the GFDL CM2-O Model Suite

Anne-Sophie Fortin aDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Anne-Sophie Fortin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5547-5412
,
Carolina O. Dufour aDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Carolina O. Dufour in
Current site
Google Scholar
PubMed
Close
,
Timothy M. Merlis bProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
, and
Rym Msadek cCECI, Université de Toulouse, CNRS, CERFACS, Toulouse, France

Search for other papers by Rym Msadek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The pattern and magnitude of the Atlantic meridional overturning circulation (AMOC) in response to an increase in atmospheric carbon dioxide (CO2) concentration greatly differ across climate models in particular due to differences in the representation of oceanic processes. Here, we investigate the response of the AMOC to an idealized climate change scenario, along with the drivers of this response, in the three configurations of a coupled climate model suite with varying resolutions in the ocean (1°, 0.25°, 0.10°). In response to the CO2 increase, the AMOC shows a reduction of similar magnitude in the low and high resolutions, while a muted response is found in the medium resolution. A decomposition of the AMOC into its geostrophic and residual components reveals that most of the AMOC reduction is due to a weakening of the geostrophic streamfunction driven by temperature anomalies, partly opposed by a strengthening of the geostrophic streamfunction driven by salinity anomalies. Changes in the AMOC due to the mesoscale eddy streamfunction contribute to 13% and 17% of the AMOC decline in the low and high resolutions, respectively, but induce very little change in the medium resolution. The similar response of the AMOC strength in the low and high resolutions hides important differences in the contribution and pattern of the geostrophic and eddy streamfunctions. The lack of sensitivity of the medium resolution to the CO2 forcing is due to a weak connection between the deep water formation regions in the northern subpolar gyre and the Deep Western Boundary Current.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a major system of ocean currents in the Atlantic that contributes to shaping the climate at regional and global scales, notably through the transport of heat from the low to the high latitudes. A major slowdown of the AMOC over the twenty-first century is predicted by current climate models in response to increasing greenhouse gases. Yet, the magnitude and timing of this slowdown are uncertain. The purpose of this study is to investigate the expected weakening of the AMOC using state-of-the-art numerical climate models that include higher resolutions than typically used in climate change assessments. Our results provide insights into the mechanisms driving the weakening of the AMOC and into differences arising from model resolutions.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne-Sophie Fortin, anne-sophie.fortin@mail.mcgill.ca

Abstract

The pattern and magnitude of the Atlantic meridional overturning circulation (AMOC) in response to an increase in atmospheric carbon dioxide (CO2) concentration greatly differ across climate models in particular due to differences in the representation of oceanic processes. Here, we investigate the response of the AMOC to an idealized climate change scenario, along with the drivers of this response, in the three configurations of a coupled climate model suite with varying resolutions in the ocean (1°, 0.25°, 0.10°). In response to the CO2 increase, the AMOC shows a reduction of similar magnitude in the low and high resolutions, while a muted response is found in the medium resolution. A decomposition of the AMOC into its geostrophic and residual components reveals that most of the AMOC reduction is due to a weakening of the geostrophic streamfunction driven by temperature anomalies, partly opposed by a strengthening of the geostrophic streamfunction driven by salinity anomalies. Changes in the AMOC due to the mesoscale eddy streamfunction contribute to 13% and 17% of the AMOC decline in the low and high resolutions, respectively, but induce very little change in the medium resolution. The similar response of the AMOC strength in the low and high resolutions hides important differences in the contribution and pattern of the geostrophic and eddy streamfunctions. The lack of sensitivity of the medium resolution to the CO2 forcing is due to a weak connection between the deep water formation regions in the northern subpolar gyre and the Deep Western Boundary Current.

Significance Statement

The Atlantic meridional overturning circulation (AMOC) is a major system of ocean currents in the Atlantic that contributes to shaping the climate at regional and global scales, notably through the transport of heat from the low to the high latitudes. A major slowdown of the AMOC over the twenty-first century is predicted by current climate models in response to increasing greenhouse gases. Yet, the magnitude and timing of this slowdown are uncertain. The purpose of this study is to investigate the expected weakening of the AMOC using state-of-the-art numerical climate models that include higher resolutions than typically used in climate change assessments. Our results provide insights into the mechanisms driving the weakening of the AMOC and into differences arising from model resolutions.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne-Sophie Fortin, anne-sophie.fortin@mail.mcgill.ca

Supplementary Materials

    • Supplemental Materials (PDF 1.1578 MB)
Save
  • Bailey, D. A., P. B. Rhines, and S. Häkkinen, 2005: Formation and pathways of North Atlantic deep water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans. Climate Dyn., 25, 497516, https://doi.org/10.1007/s00382-005-0050-3.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Search Google Scholar
    • Export Citation
  • Boers, N., 2021: Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Climate Change, 11, 680688, https://doi.org/10.1038/s41558-021-01097-4.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., M. S. Lozier, S. F. Gary, and C. W. Böning, 2009: Interior pathways of the North Atlantic meridional overturning circulation. Nature, 459, 243247, https://doi.org/10.1038/nature07979.

    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., and J. Marshall, 2016: Observations, inferences, and mechanisms of the Atlantic meridional overturning circulation: A review. Rev. Geophys., 54, 563, https://doi.org/10.1002/2015RG000493.

    • Search Google Scholar
    • Export Citation
  • Cheng, J., Z. Liu, S. Zhang, W. Liu, L. Dong, P. Liu, and H. Li, 2016: Reduced interdecadal variability of Atlantic meridional overturning circulation under global warming. Proc. Natl. Acad. Sci. USA, 113, 31753178, https://doi.org/10.1073/pnas.1519827113.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrell, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, https://doi.org/10.1175/JCLI-D-11-00463.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Decuypère, M., L. B. Tremblay, and C. O. Dufour, 2022: Impact of ocean heat transport on Arctic sea ice variability in the GFDL CM2-O model suite. J. Geophys. Res. Oceans, 127, e2021JC017762, https://doi.org/10.1029/2021JC017762.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett., 39, L13702, https://doi.org/10.1029/2012GL052107.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2016: The impact of the North Atlantic oscillation on climate through its influence on the Atlantic meridional overturning circulation. J. Climate, 29, 941962, https://doi.org/10.1175/JCLI-D-15-0396.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Dufour, C. O., and Coauthors, 2015: Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr., 45, 30573081, https://doi.org/10.1175/JPO-D-14-0240.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, https://doi.org/10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modell., 39, 6178, https://doi.org/10.1016/j.ocemod.2010.09.002.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2021: Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte, Eds., Cambridge University Press, 1211–1362.

  • Frajka-Williams, E., B. Moat, D. Smeed, D. Rayner, W. E. Johns, M. O. Baringer, D. L. Volkov, and J. Collins, 2021: Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2020 (v2020.1). NERC EDS British Oceanographic Data Centre NOC, accessed November 4 2021, https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444.

  • Frankcombe, L. M., A. von der Heydt, and H. A. Dijkstra, 2010: North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. J. Climate, 23, 36263638, https://doi.org/10.1175/2010JCLI3471.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, https://doi.org/10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Getzlaff, J., C. W. Böning, C. Eden, and A. Biastoch, 2005: Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett., 32, L09602, https://doi.org/10.1029/2004GL021002.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2015: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Climate, 28, 952977, https://doi.org/10.1175/JCLI-D-14-00353.1.

    • Search Google Scholar
    • Export Citation
  • Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell., 72, 92103, https://doi.org/10.1016/j.ocemod.2013.08.007.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Global Physical Climatology. Elsevier, 485 pp.

  • Haskins, R. K., K. I. C. Oliver, L. C. Jackson, S. S. Drijfhout, and R. A. Wood, 2019: Explaining asymmetry between weakening and recovery of the AMOC in a coupled climate model. Climate Dyn., 53, 6779, https://doi.org/10.1007/s00382-018-4570-z.

    • Search Google Scholar
    • Export Citation
  • Hirschi, J., and Coauthors, 2020: The Atlantic meridional overturning circulation in high-resolution models. J. Geophys. Res. Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., and Coauthors, 2020: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., 2013: Shutdown and recovery of the AMOC in a coupled global climate model: The role of the advective feedback. Geophys. Res. Lett., 40, 11821188, https://doi.org/10.1002/grl.50289.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and R. A. Wood, 2018: Timescales of AMOC decline in response to fresh water forcing. Climate Dyn., 51, 13331350, https://doi.org/10.1007/s00382-017-3957-6.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, and R. A. Wood, 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dyn., 45, 32993316, https://doi.org/10.1007/s00382-015-2540-2.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., and Coauthors, 2020: Impact of ocean resolution and mean state on the rate of AMOC weakening. Climate Dyn., 55, 17111732, https://doi.org/10.1007/s00382-020-05345-9.

    • Search Google Scholar
    • Export Citation
  • Jansen, M. F., and L.-P. Nadeau, 2019: A toy model for the response of the residual overturning circulation to surface warming. J. Phys. Oceanogr., 49, 12491268, https://doi.org/10.1175/JPO-D-18-0187.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., P. Cessi, D. P. Marshall, F. Schloesser, and M. A. Spall, 2019: Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. J. Geophys. Res. Oceans, 124, 53765399, https://doi.org/10.1029/2019JC015330.

    • Search Google Scholar
    • Export Citation
  • Levang, S. J., and R. W. Schmitt, 2020: What causes the AMOC to weaken in CMIP5? J. Climate, 33, 15351545, https://doi.org/10.1175/JCLI-D-19-0547.1.

    • Search Google Scholar
    • Export Citation
  • Li, F., M. S. Lozier, G. Danabasoglu, N. P. Holliday, Y.-O. Kwon, A. Romanou, S. G. Yeager, and R. Zhang, 2019: Local and downstream relationships between Labrador Sea Water volume and North Atlantic meridional overturning circulation variability. J. Climate, 32, 38833898, https://doi.org/10.1175/JCLI-D-18-0735.1.

    • Search Google Scholar
    • Export Citation
  • Lobelle, D., C. Beaulieu, V. Livina, F. Sévellec, and E. Frajka-Williams, 2020: Detectability of an AMOC decline in current and projected climate changes. Geophys. Res. Lett., 47, e2020GL089974, https://doi.org/10.1029/2020GL089974.

    • Search Google Scholar
    • Export Citation
  • Locarnini, M., and Coauthors, 2018: Temperature. Vol. 1, World Ocean Atlas 2018, NOAA Atlas NESDIS 81, 52 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol1.pdf.

  • Lockwood, J. W., C. O. Dufour, S. M. Griffies, and M. Winton, 2021: On the role of the Antarctic Slope Front on the occurrence of the Weddell Sea polynya under climate change. J. Climate, 34, 25482548, https://doi.org/10.1175/JCLI-D-20-0069.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 1997: Evidence for large-scale eddy-driven gyres in the North Atlantic. Science, 277, 361364, https://doi.org/10.1126/science.277.5324.361.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2019: A sea change in our view of overturning in the subpolar North Atlantic. Science, 363, 516521, https://doi.org/10.1126/science.aau6592.

    • Search Google Scholar
    • Export Citation
  • MacGilchrist, G. A., H. L. Johnson, C. Lique, and D. P. Marshall, 2021: Demons in the North Atlantic: Variability of deep ocean ventilation. Geophys. Res. Lett., 48, e2020GL092340, https://doi.org/10.1029/2020GL092340.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G., and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett., 39, L19609, https://doi.org/10.1029/2012GL052933.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660, https://doi.org/10.1175/1520-0485(1996)026<1655:IAATRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moat, B. I., and Coauthors, 2020: Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Sci., 16, 863874, https://doi.org/10.5194/os-16-863-2020.

    • Search Google Scholar
    • Export Citation
  • Pachauri, R. K., and Coauthors, 2014: Climatic Change 2014: Synthesis Report. IPCC, 151 pp.

  • Parker, A., and C. D. Ollier, 2016: There is no real evidence for a diminishing trend of the Atlantic meridional overturning circulation. J. Ocean Eng. Sci., 1, 3035, https://doi.org/10.1016/j.joes.2015.12.007.

    • Search Google Scholar
    • Export Citation
  • Read, J. F., 2000: CONVEX-91: Water masses and circulation of the Northeast Atlantic subpolar gyre. Prog. Oceanogr., 48, 461510, https://doi.org/10.1016/S0079-6611(01)00011-8.

    • Search Google Scholar
    • Export Citation
  • Rhein, M., and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–316.

  • Rieck, J. K., C. W. Böning, and K. Getzlaff, 2019: The nature of eddy kinetic energy in the Labrador Sea: Different types of mesoscale eddies, their temporal variability, and impact on deep convection. J. Phys. Oceanogr., 49, 20752094, https://doi.org/10.1175/JPO-D-18-0243.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, C. D., L. Jackson, and D. McNeall, 2014: Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? Geophys. Res. Lett., 41, 32043210, https://doi.org/10.1002/2014GL059473.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Sensitivity of the Atlantic meridional overturning circulation to model resolution in CMIP6 HighResMIP simulations and implications for future changes. J. Adv. Model. Earth Syst., 12, e2019MS002014, https://doi.org/10.1029/2019MS002014.

    • Search Google Scholar
    • Export Citation
  • Schlitzer, R., 2000: eWOCE-Electronic Atlas of WOCE Data. WOCE Global Data, version 2.0, accessed July 2021, https://www.ewoce.org/.

  • Smeed, D. A., and Coauthors, 2014: Observed decline of the Atlantic meridional overturning circulation 2004–2012. Ocean Sci., 10, 2938, https://doi.org/10.5194/os-10-29-2014.

    • Search Google Scholar
    • Export Citation
  • Smeed, D. A., and Coauthors, 2018: The North Atlantic Ocean is in a state of reduced overturning. Geophys. Res. Lett., 45, 15271533, https://doi.org/10.1002/2017GL076350.

    • Search Google Scholar
    • Export Citation
  • Tagklis, F., A. Bracco, T. Ito, and R. M. Castelao, 2020: Submesoscale modulation of deep water formation in the Labrador Sea. Sci. Rep., 10, 17489, https://doi.org/10.1038/s41598-020-74345-w.

    • Search Google Scholar
    • Export Citation
  • Talandier, C., 2015: La dynamique du courant profond de bord ouest dans l’Atlantique Nord et son influence sur la circulation méridienne moyenne. Ph.D. thesis, Université de Bretagne occidentale–Brest, 108 pp.

  • Talandier, C., and Coauthors, 2014: Improvements of simulated western North Atlantic current system and impacts on the AMOC. Ocean Modell., 76, 119, https://doi.org/10.1016/j.ocemod.2013.12.007.

    • Search Google Scholar
    • Export Citation
  • Waldman, R., J. Hirschi, A. Voldoire, C. Cassou, and R. Msadek, 2021: Clarifying the relation between AMOC and thermal wind: Application to the centennial variability in a coupled climate model. J. Phys. Oceanogr., 51, 343364, https://doi.org/10.1175/JPO-D-19-0284.1.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., M. E. Maltrud, M. W. Hecht, H. A. Dijkstra, and M. A. Kliphuis, 2012: Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in a strongly-eddying ocean model. Geophys. Res. Lett., 39, L09606, https://doi.org/10.1029/2012GL051611.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. Cheng, O. A. Garuba, A. Hu, and B. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.

    • Search Google Scholar
    • Export Citation
  • Winton, M., W. G. Anderson, T. L. Delworth, S. M. Griffies, W. J. Hurlin, and A. Rosati, 2014: Has coarse ocean resolution biased simulations of transient climate sensitivity? Geophys. Res. Lett., 41, 85228529, https://doi.org/10.1002/2014GL061523.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic Meridional Overturning Circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., T. L. Delworth, A. Rosati, W. G. Anderson, K. W. Dixon, H.-C. Lee, and F. Zeng, 2011: Sensitivity of the North Atlantic Ocean circulation to an abrupt change in the Nordic Sea overflow in a high resolution global coupled climate model. J. Geophys. Res., 116, C12024, https://doi.org/10.1029/2011JC007240.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, Y.-O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev. Geophys., 57, 316375, https://doi.org/10.1029/2019RG000644.

    • Search Google Scholar
    • Export Citation
  • Zou, S., and M. S. Lozier, 2016: Breaking the linkage between Labrador Sea Water production and its advective export to the subtropical gyre. J. Phys. Oceanogr., 46, 21692182, https://doi.org/10.1175/JPO-D-15-0210.1.

    • Search Google Scholar
    • Export Citation
  • Zou, S., M. S. Lozier, and M. Buckley, 2019: How is meridional coherence maintained in the lower limb of the Atlantic meridional overturning circulation? Geophys. Res. Lett., 46, 244252, https://doi.org/10.1029/2018GL080958.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 777 625 23
Full Text Views 240 209 8
PDF Downloads 265 229 8