Sensitivity of Antarctic Shelf Waters and Abyssal Overturning to Local Winds

Adele K. Morrison aResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
bAustralian Centre for Excellence in Antarctic Science, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Adele K. Morrison in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9904-4980
,
Wilma G. C. Huneke aResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
cARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Wilma G. C. Huneke in
Current site
Google Scholar
PubMed
Close
,
Julia Neme dCentre for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
eAustralian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Julia Neme in
Current site
Google Scholar
PubMed
Close
,
Paul Spence fInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
gAustralian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania, Australia
hAustralian Antarctic Partnership Program, University of Tasmania, Hobart, Tasmania, Australia

Search for other papers by Paul Spence in
Current site
Google Scholar
PubMed
Close
,
Andrew McC. Hogg aResearch School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
cARC Centre of Excellence for Climate Extremes, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Andrew McC. Hogg in
Current site
Google Scholar
PubMed
Close
,
Matthew H. England dCentre for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
eAustralian Centre for Excellence in Antarctic Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Matthew H. England in
Current site
Google Scholar
PubMed
Close
, and
Stephen M. Griffies iNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey
jProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Stephen M. Griffies in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Winds around the Antarctic continental margin are known to exert a strong control on the local ocean stratification and circulation. However, past work has largely focused on the ocean response to changing winds in limited regional sectors and the circumpolar dynamical response to polar wind change remains uncertain. In this work, we use a high-resolution global ocean–sea ice model to investigate how dense shelf water formation and the temperature of continental shelf waters respond to changes in the zonal and meridional components of the polar surface winds. Increasing the zonal easterly wind component drives an enhanced southward Ekman transport in the surface layer, raising sea level over the continental shelf and deepening coastal isopycnals. The downward isopycnal movement cools the continental shelf, as colder surface waters replace warmer waters below. However, in this model the zonal easterly winds do not impact the strength of the abyssal overturning circulation, in contrast to past idealized model studies. Instead, increasing the meridional wind speed strengthens the abyssal overturning circulation via a sea ice advection mechanism. Enhanced offshore meridional wind speed increases the northward export of sea ice, resulting in decreased sea ice thickness over the continental shelf. The reduction in sea ice coverage leads to increased air–sea heat loss, sea ice formation, brine rejection, dense shelf water formation, and abyssal overturning circulation. Increasing the meridional winds causes warming at depth over most of the continental shelf, due to a heat advection feedback associated with the enhanced overturning circulation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adele Morrison, adele.morrison@anu.edu.au

Abstract

Winds around the Antarctic continental margin are known to exert a strong control on the local ocean stratification and circulation. However, past work has largely focused on the ocean response to changing winds in limited regional sectors and the circumpolar dynamical response to polar wind change remains uncertain. In this work, we use a high-resolution global ocean–sea ice model to investigate how dense shelf water formation and the temperature of continental shelf waters respond to changes in the zonal and meridional components of the polar surface winds. Increasing the zonal easterly wind component drives an enhanced southward Ekman transport in the surface layer, raising sea level over the continental shelf and deepening coastal isopycnals. The downward isopycnal movement cools the continental shelf, as colder surface waters replace warmer waters below. However, in this model the zonal easterly winds do not impact the strength of the abyssal overturning circulation, in contrast to past idealized model studies. Instead, increasing the meridional wind speed strengthens the abyssal overturning circulation via a sea ice advection mechanism. Enhanced offshore meridional wind speed increases the northward export of sea ice, resulting in decreased sea ice thickness over the continental shelf. The reduction in sea ice coverage leads to increased air–sea heat loss, sea ice formation, brine rejection, dense shelf water formation, and abyssal overturning circulation. Increasing the meridional winds causes warming at depth over most of the continental shelf, due to a heat advection feedback associated with the enhanced overturning circulation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adele Morrison, adele.morrison@anu.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 2.2199 MB)
Save
  • Assmann, K. M., A. Jenkins, D. R. Shoosmith, D. P. Walker, S. S. Jacobs, and K. W. Nicholls, 2013: Variability of Circumpolar Deep Water transport onto the Amundsen Sea continental shelf through a shelf break trough. J. Geophys. Res. Oceans, 118, 66036620, https://doi.org/10.1002/2013JC008871.

    • Search Google Scholar
    • Export Citation
  • Barthélemy, A., H. Goosse, P. Mathiot, and T. Fichefet, 2012: Inclusion of a katabatic wind correction in a coarse-resolution global coupled climate model. Ocean Modell., 48, 4554, https://doi.org/10.1016/j.ocemod.2012.03.002.

    • Search Google Scholar
    • Export Citation
  • Beadling, R. L., and Coauthors, 2022: Importance of the Antarctic Slope Current in the Southern Ocean response to ice sheet melt and wind stress change. J. Geophys. Res. Oceans, 127, e2021JC017608, https://doi.org/10.1029/2021JC017608.

    • Search Google Scholar
    • Export Citation
  • Bowen, M. M., D. Fernandez, A. Forcen-Vazquez, A. L. Gordon, B. Huber, P. Castagno, and P. Falco, 2021: The role of tides in bottom water export from the western Ross Sea. Sci. Rep., 11, 2246, https://doi.org/10.1038/s41598-021-81793-5.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., W. M. Connolley, and J. Turner, 2008: Antarctic climate change over the twenty first century. J. Geophys. Res., 113, D03103, https://doi.org/10.1029/2007JD008933.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., and D. D. Kurtz, 1984: Katabatic wind forcing of the Terra Nova Bay polynya. J. Geophys. Res., 89, 35613572, https://doi.org/10.1029/JC089iC03p03561.

    • Search Google Scholar
    • Export Citation
  • Caillet, J., N. C. Jourdain, P. Mathiot, H. H. Hellmer, and J. Mouginot, 2023: Drivers and reversibility of abrupt ocean state transitions in the Amundsen Sea, Antarctica. J. Geophys. Res. Atmos., 128, e2022JC018929, https://doi.org/10.1029/2022JC018929.

    • Search Google Scholar
    • Export Citation
  • Dawson, H., A. K. Morrison, M. H. England, and V. Tamsitt, 2023: Pathways and timescales of connectivity around the Antarctic continental shelf. J. Geophys. Res. Oceans, 128, e2022JC018962, https://doi.org/10.1029/2022JC018962.

    • Search Google Scholar
    • Export Citation
  • Dinniman, M. S., J. M. Klinck, E. E. Hofmann, and W. O. Smith Jr., 2018: Effects of projected changes in wind, atmospheric temperature, and freshwater inflow on the Ross Sea. J. Climate, 31, 16191635, https://doi.org/10.1175/JCLI-D-17-0351.1.

    • Search Google Scholar
    • Export Citation
  • Fogt, R. L., and D. H. Bromwich, 2006: Decadal variability of the ENSO teleconnection to the high-latitude South Pacific governed by coupling with the Southern Annular Mode. J. Climate, 19, 979997, https://doi.org/10.1175/JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L., P. Spence, A. M. Hogg, and M. H. England, 2013: Sea level changes forced by Southern Ocean winds. Geophys. Res. Lett., 40, 55655825, https://doi.org/10.1002/2013GL058104.

    • Search Google Scholar
    • Export Citation
  • Greenbaum, J. S., and Coauthors, 2015: Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci., 8, 294298, https://doi.org/10.1038/ngeo2388.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM). GFDL Ocean Group Tech. Rep. 7, 645 pp., https://mom-ocean.github.io/assets/pdfs/MOM5_manual.pdf.

  • Griffies, S. M., and Coauthors, 2014: An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modell., 78, 3589, https://doi.org/10.1016/j.ocemod.2014.03.004.

    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2019: Are the near-Antarctic easterly winds weakening in response to enhancement of the Southern Annular Mode? J. Climate, 32, 18951918, https://doi.org/10.1175/JCLI-D-18-0402.1.

    • Search Google Scholar
    • Export Citation
  • Hazel, J. E., and A. L. Stewart, 2020: Bistability of the Filchner-Ronne ice shelf cavity circulation and basal melt. J. Geophys. Res. Oceans, 125, e2019JC015848, https://doi.org/10.1029/2019JC015848.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J. Steig, 2019: West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci., 12, 718724, https://doi.org/10.1038/s41561-019-0420-9.

    • Search Google Scholar
    • Export Citation
  • Hunke, E., W. Lipscomb, A. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos sea ice model documentation and software user’s manual version 5. Los Alamos Doc. LA-CC-06-012, 116 pp., http://www.ccpo.odu.edu/∼klinck/Reprints/PDF/cicedoc2015.pdf.

  • Jenkins, A., P. Dutrieux, S. Jacobs, E. Steig, H. Gudmundsson, J. Smith, and K. Heywood, 2016: Decadal ocean forcing and Antarctic Ice Sheet response: Lessons from the Amundsen Sea. Oceanography, 29 (4), 106117, https://doi.org/10.5670/oceanog.2016.103.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., D. Shoosmith, P. Dutrieux, S. Jacobs, T. W. Kim, S. H. Lee, H. K. Ha, and S. Stammerjohn, 2018: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci., 11, 733738, https://doi.org/10.1038/s41561-018-0207-4.

    • Search Google Scholar
    • Export Citation
  • Kida, S., 2011: The impact of open oceanic processes on the Antarctic Bottom Water outflows. J. Phys. Oceanogr., 41, 19411957, https://doi.org/10.1175/2011JPO4571.1.

    • Search Google Scholar
    • Export Citation
  • Kiss, A. E., and Coauthors, 2020: ACCESS-OM2: A global ocean–sea ice model at three resolutions. Geosci. Model Dev., 13, 401442, https://doi.org/10.5194/gmd-13-401-2020.

    • Search Google Scholar
    • Export Citation
  • Lago, V., and M. H. England, 2019: Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Climate, 32, 63196335, https://doi.org/10.1175/JCLI-D-18-0622.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., M. H. England, A. M. Hogg, S. R. Rintoul, and A. K. Morrison, 2023: Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature, 615, 841847, https://doi.org/10.1038/s41586-023-05762-w.

    • Search Google Scholar
    • Export Citation
  • Locarnini, M., and Coauthors, 2018: Temperature. Vol. 1, World Ocean Atlas 2018, NOAA Atlas NESDIS 81, 52 pp.

  • Massom, R. A., P. Harris, K. J. Michael, and M. Potter, 1998: The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol., 27, 420426, https://doi.org/10.3189/1998AoG27-1-420-426.

    • Search Google Scholar
    • Export Citation
  • Mathiot, P., B. Barnier, H. Gallée, J. M. Molines, J. Le Sommer, M. Juza, and T. Penduff, 2010: Introducing katabatic winds in global ERA40 fields to simulate their impacts on the Southern Ocean and sea-ice. Ocean Modell., 35, 146160, https://doi.org/10.1016/j.ocemod.2010.07.001.

    • Search Google Scholar
    • Export Citation
  • McKee, D. C., X. Yuan, A. L. Gordon, B. A. Huber, and Z. Dong, 2011: Climate impact on interannual variability of Weddell Sea Bottom Water. J. Geophys. Res., 116, C05020, https://doi.org/10.1029/2010JC006484.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, M. Savoie, S. Mallory, R. Duerr, and J. Stroeve, 2017: NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3. National Snow and Ice Data Center, accessed 22 May 2023, https://doi.org/10.7265/N59P2ZTG.

  • Moorman, R., A. K. Morrison, and A. M. Hogg, 2020: Thermal responses to Antarctic ice shelf melt in an eddy rich global ocean–sea-ice model. J. Climate, 33, 65996620, https://doi.org/10.1175/JCLI-D-19-0846.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., M. H. England, and A. M. Hogg, 2015: Response of Southern Ocean convection and abyssal overturning to surface buoyancy perturbations. J. Climate, 28, 42634278, https://doi.org/10.1175/JCLI-D-14-00110.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., A. M. Hogg, M. H. England, and P. Spence, 2020: Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Sci. Adv., 6, eaav2516, https://doi.org/10.1126/sciadv.aav2516.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. K., M. H. England, A. M. Hogg, and A. E. Kiss, 2023: Weddell Sea control of ocean temperature variability on the western Antarctic Peninsula. Geophys. Res. Lett., 50, e2023GL103018, https://doi.org/10.1029/2023GL103018.

    • Search Google Scholar
    • Export Citation
  • Naughten, K. A., P. R. Holland, P. Dutrieux, S. Kimura, D. T. Bett, and A. Jenkins, 2022: Simulated twentieth-century ocean warming in the Amundsen Sea, West Antarctica. Geophys. Res. Lett., 49, e2021GL094566, https://doi.org/10.1029/2021GL094566.

    • Search Google Scholar
    • Export Citation
  • Neme, J., M. H. England, and A. M. Hogg, 2022: Projected changes of surface winds over the Antarctic continental margin. Geophys. Res. Lett., 49, e2022GL098820, https://doi.org/10.1029/2022GL098820.

    • Search Google Scholar
    • Export Citation
  • Newsom, E. R., C. M. Bitz, F. O. Bryan, R. Abernathey, and P. R. Gent, 2016: Southern Ocean deep circulation and heat uptake in a high-resolution climate model. J. Climate, 29, 25972619, https://doi.org/10.1175/JCLI-D-15-0513.1.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., W. M. Smethie, and J. L. Bullister, 2002: On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107, 3122, https://doi.org/10.1029/2001JC000976.

    • Search Google Scholar
    • Export Citation
  • Palóczy, A., S. T. Gille, and J. L. McClean, 2018: Oceanic heat delivery to the Antarctic continental shelf: Large-scale, low-frequency variability. J. Geophys. Res. Oceans, 123, 76787701, https://doi.org/10.1029/2018JC014345.

    • Search Google Scholar
    • Export Citation
  • Pellichero, V., J.-B. Sallée, C. C. Chapman, and S. M. Downes, 2018: The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2.

    • Search Google Scholar
    • Export Citation
  • Peng, G., W. N. Meier, D. Scott, and M. Savoie, 2013: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring. Earth Syst. Sci. Data, 5, 311318, https://doi.org/10.5194/essd-5-311-2013.

    • Search Google Scholar
    • Export Citation
  • Raphael, M. N., and Coauthors, 2016: The Amundsen Sea low: Variability, change, and impact on Antarctic climate. Bull. Amer. Meteor., 97, 111121, https://doi.org/10.1175/BAMS-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, C., A. K. Morrison, and M. H. England, 2023: Wind– and sea-ice–driven interannual variability of Antarctic Bottom Water formation. J. Geophys. Res. Oceans, 128, e2023JC019774, https://doi.org/10.1029/2023JC019774.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., K. J. Heywood, A. F. Thompson, and S. Aoki, 2014: Multidecadal warming of Antarctic waters. Science, 346, 12271231, https://doi.org/10.1126/science.1256117.

    • Search Google Scholar
    • Export Citation
  • Silvano, A., and Coauthors, 2020: Recent recovery of Antarctic bottom water formation in the Ross Sea driven by climate anomalies. Nat. Geosci., 13, 780786, https://doi.org/10.1038/s41561-020-00655-3.

    • Search Google Scholar
    • Export Citation
  • Silvano, A., and Coauthors, 2022: Baroclinic ocean response to climate forcing regulates decadal variability of ice-shelf melting in the Amundsen Sea. Geophys. Res. Lett., 49, e2022GL100646, https://doi.org/10.1029/2022GL100646.

    • Search Google Scholar
    • Export Citation
  • Solodoch, A., A. L. Stewart, A. M. Hogg, A. K. Morrison, A. E. Kiss, A. F. Thompson, S. G. Purkey, and L. Cimoli, 2022: How does Antarctic Bottom Water cross the Southern Ocean? Geophys. Res. Lett., 49, e2021GL097211, https://doi.org/10.1029/2021GL097211.

    • Search Google Scholar
    • Export Citation
  • Spence, P., S. M. Griffies, M. H. England, A. M. Hogg, O. A. Saenko, and N. C. Jourdain, 2014: Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett., 41, 46014610, https://doi.org/10.1002/2014GL060613.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean’s deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett., 39, L18604, https://doi.org/10.1029/2012GL053099.

    • Search Google Scholar
    • Export Citation
  • Stewart, A. L., and A. F. Thompson, 2013: Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr., 43, 14531471, https://doi.org/10.1175/JPO-D-12-0205.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, K. D., and Coauthors, 2020: JRA55-do-based repeat year forcing datasets for driving ocean–sea-ice models. Ocean Modell., 147, 101557, https://doi.org/10.1016/j.ocemod.2019.101557.

    • Search Google Scholar
    • Export Citation
  • Tesdal, J.-E., G. A. MacGilchrist, R. L. Beadling, S. M. Griffies, J. P. Krasting, and P. Durack, 2023: Revisiting interior water mass responses to surface forcing changes and the subsequent effects on overturning in the Southern Ocean. J. Geophys. Res. Oceans, 128, e2022JC019105, https://doi.org/10.1029/2022JC019105.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., A. L. Stewart, P. Spence, and K. J. Heywood, 2018: The Antarctic Slope Current in a changing climate. Rev. Geophys., 56, 741770, https://doi.org/10.1029/2018RG000624.

    • Search Google Scholar
    • Export Citation
  • Timmermann, R., H. H. Hellmer, and A. Beckmann, 2002: Simulations of ice-ocean dynamics in the Weddell Sea 2. Interannual variability 1985–1993. J. Geophys. Res., 107, 3025, https://doi.org/10.1029/2000JC000742.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Wang, Q., S. Danilov, E. Fahrbach, J. Schröter, and T. Jung, 2012: On the impact of wind forcing on the seasonal variability of Weddell Sea Bottom Water transport. Geophys. Res. Lett., 39, L06603, https://doi.org/10.1029/2012GL051198.

    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2019: Salinity. Vol. 2, World Ocean Atlas 2018, NOAA Atlas NESDIS 82, 50 pp.

All Time Past Year Past 30 Days
Abstract Views 1494 1236 52
Full Text Views 514 387 12
PDF Downloads 525 354 18