Atmospheric Response to a Collapse of the North Atlantic Circulation under a Mid-Range Future Climate Scenario: A Regime Shift in Northern Hemisphere Dynamics

Clara Orbe aNASA Goddard Institute for Space Studies, New York, New York
bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Clara Orbe in
Current site
Google Scholar
PubMed
Close
,
David Rind aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by David Rind in
Current site
Google Scholar
PubMed
Close
,
Ron L. Miller aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Ron L. Miller in
Current site
Google Scholar
PubMed
Close
,
Larissa S. Nazarenko aNASA Goddard Institute for Space Studies, New York, New York
cCenter for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Larissa S. Nazarenko in
Current site
Google Scholar
PubMed
Close
,
Anastasia Romanou aNASA Goddard Institute for Space Studies, New York, New York
bDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, New York

Search for other papers by Anastasia Romanou in
Current site
Google Scholar
PubMed
Close
,
Jeffrey Jonas aNASA Goddard Institute for Space Studies, New York, New York
cCenter for Climate Systems Research, Earth Institute, Columbia University, New York, New York

Search for other papers by Jeffrey Jonas in
Current site
Google Scholar
PubMed
Close
,
Gary L. Russell aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gary L. Russell in
Current site
Google Scholar
PubMed
Close
,
Maxwell Kelley aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Maxwell Kelley in
Current site
Google Scholar
PubMed
Close
, and
Gavin A. Schmidt aNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gavin A. Schmidt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate models project a future weakening of the Atlantic meridional overturning circulation (AMOC), but the impacts of this weakening on climate remain highly uncertain. A key challenge in quantifying the impact of an AMOC decline is in isolating its influence on climate, relative to other changes associated with increased greenhouse gases. Here we isolate the climate impacts of a weakened AMOC in the broader context of a warming climate using a unique ensemble of Shared Socioeconomic Pathway (SSP) 2–4.5 integrations that was performed using the Climate Model Intercomparison Project phase 6 (CMIP6) version of the NASA Goddard Institute for Space Studies ModelE (E2.1). In these runs internal variability alone results in a spontaneous bifurcation of the ocean flow, wherein 2 out of 10 ensemble members exhibit an entire AMOC collapse, while the other 8 members recover at various stages despite identical forcing of each ensemble member and with no externally prescribed freshwater perturbation. We show that an AMOC collapse results in an abrupt northward shift and strengthening of the Northern Hemisphere (NH) Hadley cell (HC) and intensification of the northern midlatitude eddy-driven jet. We then use a set of coupled atmosphere–ocean abrupt CO2 experiments spanning the range 1 times to 5 times CO2 (1x to 5xCO2) to show that this response to an AMOC collapse results in a nonlinear shift in the NH circulation moving from 2xCO2 to 3xCO2. Slab-ocean versions of these experiments, by comparison, do not capture this nonlinear behavior. Our results suggest that changes in ocean heat flux convergences associated with an AMOC collapse—while highly uncertain—can result in profound changes in the NH circulation and continued efforts to constrain the AMOC response to future climate change are needed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Orbe, clara.orbe@nasa.gov

Abstract

Climate models project a future weakening of the Atlantic meridional overturning circulation (AMOC), but the impacts of this weakening on climate remain highly uncertain. A key challenge in quantifying the impact of an AMOC decline is in isolating its influence on climate, relative to other changes associated with increased greenhouse gases. Here we isolate the climate impacts of a weakened AMOC in the broader context of a warming climate using a unique ensemble of Shared Socioeconomic Pathway (SSP) 2–4.5 integrations that was performed using the Climate Model Intercomparison Project phase 6 (CMIP6) version of the NASA Goddard Institute for Space Studies ModelE (E2.1). In these runs internal variability alone results in a spontaneous bifurcation of the ocean flow, wherein 2 out of 10 ensemble members exhibit an entire AMOC collapse, while the other 8 members recover at various stages despite identical forcing of each ensemble member and with no externally prescribed freshwater perturbation. We show that an AMOC collapse results in an abrupt northward shift and strengthening of the Northern Hemisphere (NH) Hadley cell (HC) and intensification of the northern midlatitude eddy-driven jet. We then use a set of coupled atmosphere–ocean abrupt CO2 experiments spanning the range 1 times to 5 times CO2 (1x to 5xCO2) to show that this response to an AMOC collapse results in a nonlinear shift in the NH circulation moving from 2xCO2 to 3xCO2. Slab-ocean versions of these experiments, by comparison, do not capture this nonlinear behavior. Our results suggest that changes in ocean heat flux convergences associated with an AMOC collapse—while highly uncertain—can result in profound changes in the NH circulation and continued efforts to constrain the AMOC response to future climate change are needed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clara Orbe, clara.orbe@nasa.gov
Save
  • Adam, O., and Coauthors, 2018: The TropD software package (v1): Standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 43394357, https://doi.org/10.5194/gmd-11-4339-2018.

    • Search Google Scholar
    • Export Citation
  • Bellomo, K., M. Angeloni, S. Corti, and J. von Hardenberg, 2021: Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun., 12, 3659, https://doi.org/10.1038/s41467-021-24015-w.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9.

  • Brayshaw, D. J., T. Woollings, and M. Vellinga, 2009: Tropical and extratropical responses of the North Atlantic atmospheric circulation to a sustained weakening of the MOC. J. Climate, 22, 31463155, https://doi.org/10.1175/2008JCLI2594.1.

    • Search Google Scholar
    • Export Citation
  • Byrne, B., and C. Goldblatt, 2014: Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett., 41, 152160, https://doi.org/10.1002/2013GL058456.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, https://doi.org/10.1029/2004GL021581.

    • Search Google Scholar
    • Export Citation
  • Caesar, L., S. Rahmstorf, A. Robinson, G. Feulner, and V. Saba, 2018: Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature, 556, 191196, https://doi.org/10.1038/s41586-018-0006-5.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory, 2018: Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing. J. Climate, 31, 10911105, https://doi.org/10.1175/JCLI-D-17-0323.1.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., and L. M. Polvani, 2019: Exploiting the abrupt 4 × CO2 scenario to elucidate tropical expansion mechanisms. J. Climate, 32, 859875, https://doi.org/10.1175/JCLI-D-18-0330.1.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., L. Zanna, C. Orbe, L. T. Sentman, and L. M. Polvani, 2022: The future intensification of the North Atlantic winter storm track: The key role of dynamic ocean coupling. J. Climate, 35, 24072421, https://doi.org/10.1175/JCLI-D-21-0407.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, W., J. C. H. Chiang, and D. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 71877197, https://doi.org/10.1175/JCLI-D-12-00496.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and A. S. Phillips, 2009: Atmospheric circulation trends, 1950–2000: The relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J. Climate, 22, 396413, https://doi.org/10.1175/2008JCLI2453.1.

    • Search Google Scholar
    • Export Citation
  • Drijfhout, S., G. J. van Oldenborgh, and A. Cimatoribus, 2012: Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Climate, 25, 83738379, https://doi.org/10.1175/JCLI-D-12-00490.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2007: A gray-radiation aquaplanet moist GCM. Part II: Energy transports in altered climates. J. Atmos. Sci., 64, 16801693, https://doi.org/10.1175/JAS3913.1.

    • Search Google Scholar
    • Export Citation
  • Gervais, M., J. Shaman, and Y. Kushnir, 2019: Impacts of the North Atlantic warming hole in future climate projections: Mean atmospheric circulation and the North Atlantic jet. J. Climate, 32, 26732689, https://doi.org/10.1175/JCLI-D-18-0647.1.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, https://doi.org/10.1002/2014GL061638.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2017: Understanding the time scales of the tropospheric circulation response to abrupt CO2 forcing in the Southern Hemisphere: Seasonality and the role of the stratosphere. J. Climate, 30, 84978515, https://doi.org/10.1175/JCLI-D-16-0849.1.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., F. M. Selten, and S. S. Drijfhout, 2015: Decelerating Atlantic meridional overturning circulation main cause of future West European summer atmospheric circulation changes. Environ. Res. Lett., 10, 094007, https://doi.org/10.1088/1748-9326/10/9/094007.

    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., K. Marvel, G. A. Schmidt, J. W. Nielsen-Gammon, and M. Zelinka, 2022: Climate simulations: Recognize the ‘hot model’ problem. Nature, 605, 2629, https://doi.org/10.1038/d41586-022-01192-2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 18541864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, L. C., R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, and R. A. Wood, 2015: Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dyn., 45, 32993316, https://doi.org/10.1007/s00382-015-2540-2.

    • Search Google Scholar
    • Export Citation
  • James, R., R. Washington, C.-F. Schleussner, J. Rogelj, and D. Conway, 2017: Characterizing half-a-degree difference: A review of methods for identifying regional climate responses to global warming targets. Wiley Interdiscip. Rev.: Climate Change, 8, e457, https://doi.org/10.1002/wcc.457.

    • Search Google Scholar
    • Export Citation
  • Josey, S. A., J. J.-M. Hirschi, B. Sinha, A. Duchez, J. P. Grist, and R. Marsh, 2018: The recent Atlantic cold anomaly: Causes, consequences, and related phenomena. Annu. Rev. Mar. Sci., 10, 475501, https://doi.org/10.1146/annurev-marine-121916-063102.

    • Search Google Scholar
    • Export Citation
  • Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. J. Adv. Model. Earth Syst., 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.

    • Search Google Scholar
    • Export Citation
  • Lachmy, O., and T. Shaw, 2018: Connecting the energy and momentum flux response to climate change using the Eliassen-Palm relation. J. Climate, 31, 74017416, https://doi.org/10.1175/JCLI-D-17-0792.1.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., H. Tennekes, and J. M. Wallace, 1978: Maintenance of the momentum flux by transient eddies in the upper troposphere. J. Atmos. Sci., 35, 139147, https://doi.org/10.1175/1520-0469(1978)035<0139:MOTMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Levine, X. J., and T. Schneider, 2011: Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J. Atmos. Sci., 68, 769783, https://doi.org/10.1175/2010JAS3553.1.

    • Search Google Scholar
    • Export Citation
  • Lim, G. H., and J. M. Wallace, 1991: Structure and evolution of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 48, 17181732, https://doi.org/10.1175/1520-0469(1991)048<1718:SAEOBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, W., A. V. Fedorov, S.-P. Xie, and S. Hu, 2020: Climate impacts of a weakened Atlantic meridional overturning circulation in a warming climate. Sci. Adv., 6, eaaz4876, https://doi.org/10.1126/sciadv.aaz4876.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Magnusdottir, G., and R. Saravannan, 1999: The response of atmospheric heat transport to zonally-averaged SST trends. Tellus, 51A, 815832, https://doi.org/10.3402/tellusa.v51i5.14495.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2020: The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev., 13, 35713605, https://doi.org/10.5194/gmd-13-3571-2020.

    • Search Google Scholar
    • Export Citation
  • Menary, M. B., and R. A. Wood, 2018: An anatomy of the projected North Atlantic warming hole in CMIP5 models. Climate Dyn., 50, 30633080, https://doi.org/10.1007/s00382-017-3793-8.

    • Search Google Scholar
    • Export Citation
  • Menzel, M. E., D. Waugh, and K. Grise, 2019: Disconnect between Hadley cell and subtropical jet variability and response to increased CO2. Geophys. Res. Lett., 46, 70457053, https://doi.org/10.1029/2019GL083345.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2021: CMIP6 historical simulations (1850–2014) with GISS-E2.1. J. Adv. Model. Earth Syst., 13, e2019MS002034, https://doi.org/10.1029/2019MS002034.

    • Search Google Scholar
    • Export Citation
  • Mitevski, I., C. Orbe, R. Chemke, L. Nazarenko, and L. M. Polvani, 2021: Non-monotonic response of the climate system to abrupt CO2 forcing. Geophys. Res. Lett., 48, e2020GL090861, https://doi.org/10.1029/2020GL090861.

    • Search Google Scholar
    • Export Citation
  • Mitevski, I., L. M. Polvani, and C. Orbe, 2022: Asymmetric warming/cooling response to CO2 increase/decrease mainly due to non-logarithmic forcing, not feedbacks. Geophys. Res. Lett., 49, e2021GL097133, https://doi.org/10.1029/2021GL097133.

    • Search Google Scholar
    • Export Citation
  • Nazarenko, L. S., and Coauthors, 2022: Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst., 14, e2021MS002871, https://doi.org/10.1029/2021MS002871.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coautors, 2020: GISS model E2.2: A climate model optimized for the middle atmosphere—2. Validation of large-scale transport and evaluation of climate response. J. Geophys. Res. Atmos., 125, e2020JD033151, https://doi.org/10.1029/2020JD033151.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., M. Huber, T. Woollings, and L. Zanna, 2016: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, 28102818, https://doi.org/10.1002/2016GL067925.

    • Search Google Scholar
    • Export Citation
  • Orihuela-Pinto, B., M. H. England, and A. S. Taschetto, 2022: Interbasin and interhemispheric impacts of a collapsed Atlantic overturning circulation. Nat. Climate Change, 12, 558565, https://doi.org/10.1038/s41558-022-01380-y.

    • Search Google Scholar
    • Export Citation
  • Outten, S., I. Esau, and O. H. Otterå, 2018: Bjerknes compensation in the CMIP5 climate models. J. Climate, 31, 87458760, https://doi.org/10.1175/JCLI-D-18-0058.1.

    • Search Google Scholar
    • Export Citation
  • Pedro, J. B., M. Jochum, C. Buizert, F. He, S. Barker, and S. O. Rasmussen, 2018: Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat. Sci. Rev., 192, 2746, https://doi.org/10.1016/j.quascirev.2018.05.005.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht, 2015: Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Climate Change, 5, 475480, https://doi.org/10.1038/nclimate2554.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33, https://doi.org/10.1007/s10584-011-0149-y.

    • Search Google Scholar
    • Export Citation
  • Rind, D., G. A. Schmidt, J. Jonas, R. Miller, L. Nazarenko, M. Kelley, and J. Romanski, 2018: Multicentury instability of the Atlantic meridional circulation in rapid warming simulations with GISS ModelE2. J. Geophys. Res. Atmos., 123, 63316355, https://doi.org/10.1029/2017JD027149.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—Model structure, climatology, variability, and climate sensitivity. J. Geophys. Res. Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204.

    • Search Google Scholar
    • Export Citation
  • Robson, J., P. Ortega, and R. Sutton, 2016: A reversal of climatic trends in the North Atlantic since 2005. Nat. Geosci., 9, 513517, https://doi.org/10.1038/ngeo2727.

    • Search Google Scholar
    • Export Citation
  • Romanou, A., and Coauthors, 2023: Stochastic bifurcation of the North Atlantic circulation under a mid-range future climate scenario with the NASA-GISS ModelE. J. Climate, https://doi.org/10.1175/JCLI-D-22-0536.1, in press.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. Wigley, M. E. Schlesinger, and J. F. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie Tech. Rep. 47, 31 pp., https://pure.mpg.de/rest/items/item_2566446_3/component/file_2566445/content.

  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Search Google Scholar
    • Export Citation
  • Shaffrey, L., and R. Sutton, 2006: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model. J. Climate, 19, 11671181, https://doi.org/10.1175/JCLI3652.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and A. Voigt, 2015: Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci., 8, 560566, https://doi.org/10.1038/ngeo2449.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, and Y. Tian, 2017: Eddy influences on the strength of the Hadley circulation: Dynamic and thermodynamic perspectives. J. Atmos. Sci., 74, 467486, https://doi.org/10.1175/JAS-D-16-0238.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, N. J. Dunstone, D. Fereday, J. M. Murphy, H. Pohlmann, and A. A. Scaife, 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846849, https://doi.org/10.1038/ngeo1004.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and J. M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459471, https://doi.org/10.1007/s10584-013-1032-9.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2007: The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J. Climate, 20, 48994919, https://doi.org/10.1175/JCLI4283.1.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2008: Impacts of thermohaline circulation shutdown in the twenty-first century. Climatic Change, 91, 4363, https://doi.org/10.1007/s10584-006-9146-y.

    • Search Google Scholar
    • Export Citation
  • Vial, J., C. Cassou, F. Codron, S. Bony, and Y. Ruprich-Robert, 2018: Influence of the Atlantic meridional overturning circulation on the tropical climate response to CO2 forcing. Geophys. Res. Lett., 45, 85198528, https://doi.org/10.1029/2018GL078558.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, 31, 75657581, https://doi.org/10.1175/JCLI-D-18-0108.1.

    • Search Google Scholar
    • Export Citation
  • Weijer, W., W. Cheng, O. A. Garuba, A. Hu, and B. T. Nadiga, 2020: CMIP6 models predict significant 21st century decline of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 47, e2019GL086075, https://doi.org/10.1029/2019GL086075.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci., 5, 313317, https://doi.org/10.1038/ngeo1438.

    • Search Google Scholar
    • Export Citation
  • Wu, L., C. Li, C. Yang, and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 30023019, https://doi.org/10.1175/2007JCLI1858.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., and T. G. Shepherd, 2017: Storylines of atmospheric circulation change for European regional climate impact assessment. J. Climate, 30, 65616577, https://doi.org/10.1175/JCLI-D-16-0807.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 18531860, https://doi.org/10.1175/JCLI3460.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., S. M. Kang, and I. M. Held, 2010: Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback. J. Climate, 23, 378389, https://doi.org/10.1175/2009JCLI3118.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1682 1682 1369
Full Text Views 204 204 132
PDF Downloads 241 241 148