Growing Pacific Linkage with Western North Atlantic Explosive Cyclogenesis

Jacob Stuivenvolt-Allen aDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah
bDepartment of Earth and Planetary Sciences, Yale University, New Haven, Connecticut

Search for other papers by Jacob Stuivenvolt-Allen in
Current site
Google Scholar
PubMed
Close
,
Simon S.-Y. Wang aDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Simon S.-Y. Wang in
Current site
Google Scholar
PubMed
Close
,
Yoshimitsu Chikamoto aDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah

Search for other papers by Yoshimitsu Chikamoto in
Current site
Google Scholar
PubMed
Close
,
Jonathan D. D. Meyer aDepartment of Plants, Soils, and Climate, Utah State University, Logan, Utah
cUtah Climate Center, Utah State University, Logan, Utah

Search for other papers by Jonathan D. D. Meyer in
Current site
Google Scholar
PubMed
Close
,
Zachary F. Johnson dDepartment of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by Zachary F. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Liping Deng eCollege of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong, China

Search for other papers by Liping Deng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob Stuivenvolt-Allen, jacob.stuivenvolt-allen@yale.edu

Abstract

Explosive cyclones (ECs), defined as extratropical cyclones that experience normalized pressure drops of at least 24 hPa in 24 h, are impactful weather events in the North Atlantic sector, but year-to-year changes in the frequency and impacts of these storms are sizeable. To analyze the sources of this interannual variability, we track cases of ECs and dissect them into two spatial groups: those that formed near the east coast of North America (coastal) and those in the north central Atlantic (high latitude). The frequency of high-latitude ECs is strongly correlated with the North Atlantic Oscillation, a well-known feature, whereas coastal EC frequency is statistically linked with an atmospheric wave train emanating from the North Pacific in the last 30 years. This wave train pattern of alternating high and low pressure is associated with heightened upper-level divergence and Eady growth rates along the east coast of North America, likely resulting in a stronger correspondence between the atmospheric wave train and coastal EC frequency. Using coupled model experiments, we show that the tropical and North Pacific oceans are an important factor for this atmospheric wave train and the subsequent enhancement of seasonal baroclinicity in the North Atlantic.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jacob Stuivenvolt-Allen, jacob.stuivenvolt-allen@yale.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.8595 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 64686484, https://doi.org/10.1175/2010JCLI3437.1.

    • Search Google Scholar
    • Export Citation
  • Baehr, C., B. Pouponneau, F. Ayrault, and A. Joly, 1999: Dynamical characterization of the FASTEX cyclogenesis cases. Quart. J. Roy. Meteor. Soc., 125, 34693494, https://doi.org/10.1002/qj.49712556117.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., S. Hagemann, and K. I. Hodges, 2004: Can climate trends be calculated from reanalysis data? J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536.

    • Search Google Scholar
    • Export Citation
  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 12561271, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and Coauthors, 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 37513777, https://doi.org/10.5194/gmd-9-3751-2016.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 21482177, https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2014: Long-lived response of the midlatitude circulation and storm tracks to pulses of tropical heating. J. Climate, 27, 88098826, https://doi.org/10.1175/JCLI-D-14-00312.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1991: Low-frequency waves and traveling storm tracks. Part I: Barotropic component. J. Atmos. Sci., 48, 14201436, https://doi.org/10.1175/1520-0469(1991)048<1420:LFWATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Catto, J. L., 2016: Extratropical cyclone classification and its use in climate studies. Rev. Geophys., 54, 486520, https://doi.org/10.1002/2016RG000519.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression analysis. J. Atmos. Sci., 50, 20382053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chartrand, J., and F. S. R. Pausata, 2020: Impacts of the North Atlantic Oscillation on winter precipitations and storm track variability in southeast Canada and the northeast United States. Wea. Climate Dyn., 1, 731744, https://doi.org/10.5194/wcd-1-731-2020.

    • Search Google Scholar
    • Export Citation
  • Chien, Y.-T., S.-Y. S Wang, Y. Chikamoto, S. L. Voelker, J. D. D. Meyer, and J.-H. Yoon, 2019:. North American winter dipole: Observed and simulated changes in circulations. Atmosphere, 10 (12), https://doi.org/10.3390/atmos10120793.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., and Coauthors, 2015: Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun., 6, 6869, https://doi.org/10.1038/ncomms7869.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., T. Mochizuki, A. Timmermann, M. Kimoto, and M. Watanabe, 2016: Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett., 43, 71437151, https://doi.org/10.1002/2016GL069544.

    • Search Google Scholar
    • Export Citation
  • Chikamoto, Y., A. Timmermann, M. J. Widlansky, S. Zhang, and M. A. Balmaseda, 2019: A drift-free decadal climate prediction system for the Community Earth System Model. J. Climate, 32, 59675995, https://doi.org/10.1175/JCLI-D-18-0788.1.

    • Search Google Scholar
    • Export Citation
  • Ciasto, L. M., C. Li, J. J. Wettstein, and N. G. Kvamstø, 2016: North Atlantic storm-track sensitivity to projected sea surface temperature: Local versus remote influences. J. Climate, 29, 69736991, https://doi.org/10.1175/JCLI-D-15-0860.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Search Google Scholar
    • Export Citation
  • Colucci, S. J., 1985: Explosive cyclogenesis and large-scale circulation changes: Implications for atmospheric blocking. J. Atmos. Sci., 42, 27012717, https://doi.org/10.1175/1520-0469(1985)042<2701:ECALSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Deveson, A. C. L., K. A. Browning, and T. D. Hewson, 2002: A classification of FASTEX cyclones using a height-attributable quasi-geostrophic vertical-motion diagnostic. Quart. J. Roy. Meteor. Soc., 128, 93117, https://doi.org/10.1256/00359000260498806.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Ebita, A., and Coauthors, 2011: The Japanese 55-year reanalysis “JRA-55”: An interim report. SOLA, 7, 149152, https://doi.org/10.2151/sola.2011-038.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1982: The initial growth of disturbances in a baroclinic flow. J. Atmos. Sci., 39, 16631686, https://doi.org/10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1984: Modal and non-modal baroclinic waves. J. Atmos. Sci., 41, 668673, https://doi.org/10.1175/1520-0469(1984)041<0668:MANMBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feser, F., M. Barcikowska, O. Krueger, F. Schenk, R. Weisse, and L. Xia, 2015: Storminess over the North Atlantic and northwestern Europe—A review. Quart. J. Roy. Meteor. Soc., 141, 350382, https://doi.org/10.1002/qj.2364.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., T. Brücher, V. Ermert, A. Krüger, and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, https://doi.org/10.5194/nhess-9-405-2009.

    • Search Google Scholar
    • Export Citation
  • Fosu, B., J. He, and G. Liguori, 2020: Equatorial Pacific warming attenuated by SST warming patterns in the tropical Atlantic and Indian Oceans. Geophys. Res. Lett., 47, e2020GL088231, https://doi.org/10.1029/2020GL088231.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., 1979: The effects of long planetary waves on the regions of cyclogenesis: Linear theory. J. Atmos. Sci., 36, 195204, https://doi.org/10.1175/1520-0469(1979)036<0195:TEOLPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R., 1976: The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33, 16861701, https://doi.org/10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gómara, I., J. G. Pinto, T. Woollings, G. Masato, P. Zurita‐Gotor, and B. Rodríguez‐Fonseca, 2014: Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector. Quart. J. Roy. Meteor. Soc., 140, 738753, https://doi.org/10.1002/qj.2190.

    • Search Google Scholar
    • Export Citation
  • Gómara, I., B. Rodríguez-Fonseca, P. Zurita-Gotor, S. Ulbrich, and J. G. Pinto, 2016: Abrupt transitions in the NAO control of explosive North Atlantic cyclone development. Climate Dyn., 47, 30913111, https://doi.org/10.1007/s00382-016-3015-9.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., and H. F. Dacre, 2006: Classifying dynamical forcing mechanisms using a climatology of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 132, 11191137, https://doi.org/10.1256/qj.05.69.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 11561173, https://doi.org/10.1175/1520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2000: Role of nonmodal growth and nonlinearity in cyclogenesis initial-value problems. J. Atmos. Sci., 57, 29512967, https://doi.org/10.1175/1520-0469(2000)057<2951:RONGAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, R., R. Erdélyi, E. Hanna, J. M. Jones, and A. A. Scaife, 2015: Drivers of North Atlantic Polar Front jet stream variability. Int. J. Climatol., 35, 16971720, https://doi.org/10.1002/joc.4121.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., Y. Chikamoto, J.-S. Kug, M. Kimoto, and T. Mochizuki, 2017: Tropical Atlantic-Korea teleconnection pattern during boreal summer season. Climate Dyn., 49, 26492664, https://doi.org/10.1007/s00382-016-3474-z.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El Niño. J. Atmos. Sci., 46, 163174, https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, B., J. L. Kinter, and P. S. Schopf, 2002: Ocean data assimilation using intermittent analyses and continuous model error correction. Adv. Atmos. Sci., 19, 965992, https://doi.org/10.1007/s00376-002-0059-z.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, S.-O., S.-Y. Hong, and M. Kanamitsu, 2010: Impacts of assimilated data on reanalysis climatology. Asia-Pac. J. Atmos. Sci., 46, 185197, https://doi.org/10.1007/s13143-010-0017-0.

    • Search Google Scholar
    • Export Citation
  • Johnson, Z. F., Y. Chikamoto, S.-Y. S. Wang, M. J. McPhaden, and T. Mochizuki, 2020: Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Climate Dyn., 55, 789811, https://doi.org/10.1007/s00382-020-05295-2.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, C., H. Endo, Y. Ota, S. Kobayashi, H. Onoda, Y. Harada, K. Onogi, and H. Kamahori, 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only. SOLA, 10, 7882, https://doi.org/10.2151/sola.2014-016.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., II, and S. J. Colucci, 1988: Synoptic climatology of 500 mb circulation changes during explosive cyclogenesis. Mon. Wea. Rev., 116, 14311443, https://doi.org/10.1175/1520-0493(1988)116<1431:SCOMCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 699673, https://doi.org/10.1038/ngeo2770.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., and Y. Asuma, 2008: Numerical study of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 136, 712740, https://doi.org/10.1175/2007MWR2111.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., L. F. Bosart, and D. Keyser, 1996: Planetary- and synoptic-scale characteristics of explosive wintertime cyclogenesis over the western North Atlantic Ocean. Mon. Wea. Rev., 124, 26722702, https://doi.org/10.1175/1520-0493(1996)124<2672:PASSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1996: The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Climate, 9, 20362057, https://doi.org/10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeComte, D., 2019: U.S. weather highlights 2018: Another historic hurricane and wildfire season. Weatherwise, 72, 1223, https://doi.org/10.1080/00431672.2019.1586492.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Macdonald, B. C., and E. R. Reiter, 1988: Explosive cyclogenesis over the eastern United States. Mon. Wea. Rev., 116, 15681586, https://doi.org/10.1175/1520-0493(1988)116<1568:ECOTEU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • May, W., and L. Bengtsson, 1998: The signature of ENSO in the Northern Hemisphere midlatitude seasonal mean flow and high-frequency intraseasonal variability. Meteor. Atmos. Phys., 69, 81100, https://doi.org/10.1007/BF01025185.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures. Nat. Geosci., 9, 389394, https://doi.org/10.1038/ngeo2687.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, https://doi.org/10.3402/tellusa.v47i5.11553.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2014: Record-breaking winters and global climate change. Science, 344, 803804, https://doi.org/10.1126/science.1255147.

  • Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteor. Soc., 97, 457482, https://doi.org/10.1002/qj.49709741407.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., S. Zacharias, A. H. Fink, G. C. Leckebusch, and U. Ulbrich, 2009: Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dyn., 32, 711737, https://doi.org/10.1007/s00382-008-0396-4.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Purich, A., and Coauthors, 2016: Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Climate, 29, 89318948, https://doi.org/10.1175/JCLI-D-16-0440.1.

    • Search Google Scholar
    • Export Citation
  • Reale, M., M. L. R. Liberato, P. Lionello, J. G. Pinto, S. Salon, and S. Ulbrich, 2019: A global climatology of explosive cyclones using a multi-tracking approach. Tellus, 71A, 1611340, https://doi.org/10.1080/16000870.2019.1611340.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1989: On the statistical analysis of cyclone deepening rates. Mon. Wea. Rev., 117, 22932298, https://doi.org/10.1175/1520-0493(1989)117<2293:OTSAOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., and M. R. Schumann, 2011: Physical processes governing the rapid deepening tail of maritime cyclogenesis. Mon. Wea. Rev., 139, 27762789, https://doi.org/10.1175/MWR-D-10-05002.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and L. F. Bosart, 1986: An investigation of explosively deepening oceanic cyclones. Mon. Wea. Rev., 114, 702718, https://doi.org/10.1175/1520-0493(1986)114<0702:AIOEDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Search Google Scholar
    • Export Citation
  • Rudeva, I., S. K. Gulev, I. Simmonds, and N. Tilinina, 2014: The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms. Tellus, 66A, 24961, https://doi.org/10.3402/tellusa.v66.24961.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb”. Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and C. A. Davis, 1988: Patterns of thickness anomaly for explosive cyclogenesis over the west-central North Atlantic Ocean. Mon. Wea. Rev., 116, 27252730, https://doi.org/10.1175/1520-0493(1988)116<2725:POTAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., G. Rivière, L. M. Ciasto, and C. Li, 2018: Extratropical cyclogenesis changes in connection with tropospheric ENSO teleconnections to the North Atlantic: Role of stationary and transient waves. J. Atmos. Sci., 75, 39433964, https://doi.org/10.1175/JAS-D-17-0340.1.

    • Search Google Scholar
    • Export Citation
  • Schulte, J. A., and S. Lee, 2017: Strengthening North Pacific influences on United States temperature variability. Sci. Rep., 7, 124, https://doi.org/10.1038/s41598-017-00175-y.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2019: Extratropical cyclones: A century of research on meteorology’s centerpiece. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0015.1.

  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, https://doi.org/10.1175/JCLI-D-11-00260.1.

    • Search Google Scholar
    • Export Citation
  • Silberberg, S. R., and L. F. Bosart, 1982: An analysis of systematic cyclone errors in the NMC LFM-II model during the 1978–79 cool season. Mon. Wea. Rev., 110, 254271, https://doi.org/10.1175/1520-0493(1982)110<0254:AAOSCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, D., D. L. Swain, J. S. Mankin, D. E. Horton, L. N. Thomas, B. Rajaratnam, and N. S. Diffenbaugh, 2016: Recent amplification of the North American winter temperature dipole. J. Geophys. Res. Atmos., 121, 99119928, https://doi.org/10.1002/2016JD025116.

    • Search Google Scholar
    • Export Citation
  • Sriver, R. L., C. E. Forest, and K. Keller, 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, 54685476, https://doi.org/10.1002/2015GL064546.

    • Search Google Scholar
    • Export Citation
  • Stuivenvolt-Allen, J., and S. S.-Y. Wang, 2019: Data mining climate variability as an indicator of U.S. natural gas. Front. Big Data, 2, 20, https://doi.org/10.3389/fdata.2019.00020.

    • Search Google Scholar
    • Export Citation
  • Stuivenvolt-Allen, J., S.-Y. S. Wang, Z. Johnson, and Y. Chikamoto, 2021: Atmospheric rivers impacting Northern California exhibit a quasi-decadal frequency. J. Geophys. Res. Atmos., 126, e2020JD034196, https://doi.org/10.1029/2020JD034196.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., T. R. Karl, and T. W. Spence, 2002: The need for a systems approach to climate observations. Bull. Amer. Meteor. Soc., 83, 15931602, https://doi.org/10.1175/BAMS-83-11-1593.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105, https://doi.org/10.1007/978-1-944970-33-8_6.

  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., A. H. Fink, M. Klawa, and J. G. Pinto, 2001: Three extreme storms over Europe in December 1999. Weather, 56, 7080, https://doi.org/10.1002/j.1477-8696.2001.tb06540.x.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., G. C. Leckebusch, and J. G. Pinto, 2009: Extra-tropical cyclones in the present and future climate: A review. Theor. Appl. Climatol., 96, 117131, https://doi.org/10.1007/s00704-008-0083-8.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Elsevier, 504 pp.

  • Wang, C.-C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, https://doi.org/10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., W.-R. Huang, and J.-H. Yoon, 2015: The North American winter ‘dipole’ and extremes activity: A CMIP5 assessment. Atmos. Sci. Lett., 16, 338345, https://doi.org/10.1002/asl2.565.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y. S., J.-H. Yoon, E. Becker, and R. Gillies, 2017: California from drought to deluge. Nat. Climate Change, 7, 465468, https://doi.org/10.1038/nclimate3330.

    • Search Google Scholar
    • Export Citation
  • Wettstein, J. J., and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67, 14201437, https://doi.org/10.1175/2009JAS3194.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and C. A. Davis, 1994: Cyclogenesis in a saturated environment. J. Atmos. Sci., 51, 889908, https://doi.org/10.1175/1520-0469(1994)051<0889:CIASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 686 566 18
Full Text Views 242 197 3
PDF Downloads 254 214 7