Increased Persistence in Winter-to-Spring Precipitation Anomalies over South China since the Late 1990s and the Possible Mechanisms

Mengqi Zhang aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Mengqi Zhang in
Current site
Google Scholar
PubMed
Close
and
Jianqi Sun aNansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
cUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jianqi Sun in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reveals that South China precipitation (SCP) anomalies tend to persist well from winter to the following spring after the late 1990s, favoring long-lasting drought or flood events over South China. Mechanism analysis indicates that the interdecadal changes in El Niño–Southern Oscillation (ENSO) and the preceding November central Asian snow cover could contribute to the increased persistence of winter-to-spring SCP anomalies. ENSO has a stable impact on winter SCP, whereas its impact on spring SCP is significantly enhanced after the late 1990s. With a weakened intensity and faster decay rate in the recent two decades, the ENSO-related spring SST anomalies over the tropical Pacific are relatively weaker, inducing a weakened and more southward-located western North Pacific anticyclone. This further leads to an interdecadal migration of the spring rainfall belt anomaly, consequently favoring the persistence of winter-to-spring SCP anomalies after the late 1990s. Additionally, the impacts of November central Asian snow cover on winter and spring SCP are both strengthened after the late 1990s. In the most recent two decades, the snow-cover-related cooling effect has become stronger, which induces winter cyclonic anomalies over Lake Baikal, favoring increased winter SCP. In addition, increased snow cover excites upward-propagating waves from the troposphere to the stratosphere, consequently weakening the stratospheric polar vortex. In spring, the stratospheric polar vortex signals propagate downward and result in a negative Arctic Oscillation in the troposphere, favoring more spring SCP. Therefore, central Asian snow cover is also conductive to the persistence of winter-to-spring SCP anomalies after the late 1990s.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

This study reveals that South China precipitation (SCP) anomalies tend to persist well from winter to the following spring after the late 1990s, favoring long-lasting drought or flood events over South China. Mechanism analysis indicates that the interdecadal changes in El Niño–Southern Oscillation (ENSO) and the preceding November central Asian snow cover could contribute to the increased persistence of winter-to-spring SCP anomalies. ENSO has a stable impact on winter SCP, whereas its impact on spring SCP is significantly enhanced after the late 1990s. With a weakened intensity and faster decay rate in the recent two decades, the ENSO-related spring SST anomalies over the tropical Pacific are relatively weaker, inducing a weakened and more southward-located western North Pacific anticyclone. This further leads to an interdecadal migration of the spring rainfall belt anomaly, consequently favoring the persistence of winter-to-spring SCP anomalies after the late 1990s. Additionally, the impacts of November central Asian snow cover on winter and spring SCP are both strengthened after the late 1990s. In the most recent two decades, the snow-cover-related cooling effect has become stronger, which induces winter cyclonic anomalies over Lake Baikal, favoring increased winter SCP. In addition, increased snow cover excites upward-propagating waves from the troposphere to the stratosphere, consequently weakening the stratospheric polar vortex. In spring, the stratospheric polar vortex signals propagate downward and result in a negative Arctic Oscillation in the troposphere, favoring more spring SCP. Therefore, central Asian snow cover is also conductive to the persistence of winter-to-spring SCP anomalies after the late 1990s.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.9782 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 20442055, https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ao, J., and J. Sun, 2016a: Decadal change in factors affecting winter precipitation over eastern China. Climate Dyn., 46, 111121, https://doi.org/10.1007/s00382-015-2572-7.

    • Search Google Scholar
    • Export Citation
  • Ao, J., and J. Sun, 2016b: Connection between November snow cover over eastern Europe and winter precipitation over East Asia. Int. J. Climatol., 36, 23962404, https://doi.org/10.1002/joc.4484.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, H., Z. Sun, and W. Zhu, 2003: The effects of Eurasian snow cover anomaly on winter atmospheric general circulation Part II. Model simulation (in Chinese). Chin. J. Atmos. Sci., 27, 847860, https://doi.org/10.3878/j.issn.1006-9895.2003.05.06.

    • Search Google Scholar
    • Export Citation
  • Chen, J., Z. Wen, R. Wu, Z. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between southern China winter-spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., M. Barlow, P. J. Kushner, and K. Saito, 2007: Stratosphere–troposphere coupling and links with Eurasian land surface variability. J. Climate, 20, 53355343, https://doi.org/10.1175/2007JCLI1725.1.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2011: Influence of El Niño Modoki on spring rainfall over South China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.

    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, https://doi.org/10.1029/2010JD014761.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., and P. J. Kushner, 2011: The role of linear interference in the annular mode response to tropical SST forcing. J. Climate, 24, 778794, https://doi.org/10.1175/2010JCLI3735.1.

    • Search Google Scholar
    • Export Citation
  • Fletcher, C. G., S. C. Hardiman, P. J. Kushner, and J. Cohen, 2009: The dynamical response to snow cover perturbations in a large ensemble of atmospheric GCM integrations. J. Climate, 22, 12081222, https://doi.org/10.1175/2008JCLI2505.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gong, G., D. Entekhabi, and J. Cohen, 2003: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. J. Climate, 16, 39173931, https://doi.org/10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, L., J. Sun, S. Yu, and M. Zhang, 2021: Footprints of Pacific decadal oscillation in the interdecadal variation of consecutive cloudy-rainy events in southern China. Atmos. Res., 257, 105609, https://doi.org/10.1016/j.atmosres.2021.105609.

    • Search Google Scholar
    • Export Citation
  • Han, S., and J. Sun, 2018: Impacts of autumnal Eurasian snow cover on predominant modes of boreal winter surface air temperature over Eurasia. J. Geophys. Res. Atmos., 123, 10 05710 072, https://doi.org/10.1029/2018JD028443.

    • Search Google Scholar
    • Export Citation
  • Han, S., and J. Sun, 2021: A skillful prediction scheme for April precipitation over central East China. Atmos. Res., 261, 105737, https://doi.org/10.1016/j.atmosres.2021.105737.

    • Search Google Scholar
    • Export Citation
  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, H.-L. Ren, H. Wang, M. L’Heureux, and F.-F. Jin, 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 26012613, https://doi.org/10.1175/JCLI-D-12-00265.1.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. H. Huang, J. S. Zhu, M. L’Heureux, M. J. McPhaden, and J.-Y. Yu, 2020: The interdecadal shift of ENSO properties in 1999/2000: A review. J. Climate, 33, 44414462, https://doi.org/10.1175/JCLI-D-19-0316.1.

    • Search Google Scholar
    • Export Citation
  • Huang, D.-Q., J. Zhu, Y.-C. Zhang, J. Wang, and X.-Y. Kuang, 2015: The impact of the East Asian subtropical jet and polar front jet on the frequency of spring persistent rainfall over southern China in 1997–2011. J. Climate, 28, 60546066, https://doi.org/10.1175/JCLI-D-14-00641.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X., D. R. Cao, J. W. Ge, and M. Wang, 2018: Interdecadal change of the impact of Eurasian snow on spring precipitation over southern China. J. Geophys. Res. Atmos., 123, 10 09210 108, https://doi.org/10.1029/2018JD028612.

    • Search Google Scholar
    • Export Citation
  • Jia, X., Y. You, R. Wu, and Y. Yang, 2019: Interdecadal changes in the dominant modes of the interannual variation of spring precipitation over China in the mid-1980s. J. Geophys. Res. Atmos., 124, 10 67610 695, https://doi.org/10.1029/2019JD030901.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2003: Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 320, https://doi.org/10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, F., and H. Wang, 2014: Autumn Eurasian snow depth, autumn Arctic sea ice cover and East Asian winter monsoon. Int. J. Climatol., 34, 36163625, https://doi.org/10.1002/joc.3936.

    • Search Google Scholar
    • Export Citation
  • Li, S., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126135, https://doi.org/10.1007/s00376-007-0126-6.

    • Search Google Scholar
    • Export Citation
  • Li, T., B. Wang, B. Wu, T. J. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 9871006, https://doi.org/10.1007/s13351-017-7147-6.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., Z.-Z. Hu, and R. Wu, 2020: Cooperative effects of tropical Pacific and Atlantic SST forcing in southern China winter precipitation variability. Climate Dyn., 55, 29032919, https://doi.org/10.1007/s00382-020-05430-z.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twenty first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 25772587, https://doi.org/10.1175/JCLI-D-13-00438.1.

    • Search Google Scholar
    • Export Citation
  • Luo, X., and B. Wang, 2019: How autumn Eurasian snow anomalies affect East Asian winter monsoon: A numerical study. Climate Dyn., 52, 6982, https://doi.org/10.1007/s00382-018-4138-y.

    • Search Google Scholar
    • Export Citation
  • Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea ice loss on recent Eurasian cooling. Nat. Climate Change, 9, 123129, https://doi.org/10.1038/s41558-018-0379-3.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., D. Saint-Martin, and H. Douville, 2012: A numerical sensitivity study of the influence of Siberian snow on the Northern Annular Mode. J. Climate, 25, 592607, https://doi.org/10.1175/JCLI-D-11-00038.1.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and P. D. Govekar, 2014: What are the physical links between Arctic sea ice loss and Eurasian winter climate. Environ. Res. Lett., 9, 101003, https://doi.org/10.1088/1748-9326/9/10/101003.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., C. G. Fletcher, and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, https://doi.org/10.1175/2010JCLI3606.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and S. Yang, 2012: Persistent severe drought in southern China during winter–spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. Ao, 2013: Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull., 58, 13951401, https://doi.org/10.1007/s11434-012-5542-z.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., F. Xue, and G. Zhou, 2002: The spring monsoon in South China and its relationship to large-scale circulation features. Adv. Atmos. Sci., 19, 651664, https://doi.org/10.1007/s00376-002-0005-0.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, S. Fong, and K. Leong, 2011: The seasonal march of the North Pacific Oscillation and its association with the interannual variations of China’s climate in boreal winter and spring (in Chinese). Chin. J. Atmos. Sci., 35, 393402, https://doi.org/10.3878/j.issn.1006-9895.2011.03.01.

    • Search Google Scholar
    • Export Citation
  • Wang, S. P., H. X. Duan, and J. Y. Feng, 2011: Drought events and its influence in spring of 2011 in China (in Chinese). J. Arid Meteor., 29, 261268, https://doi.org/10.3969/j.issn.1006-7639.2011.02.023.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., R. Wu, and Y. Wang, 2022: Impacts of the East Asian winter monsoon on winter precipitation variability over East Asia-western North Pacific. Climate Dyn., 58, 30413055, https://doi.org/10.1007/s00382-021-06086-z.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Nitta, 1998: Relative impacts of snow and sea surface temperature anomalies on an extreme phase in the winter atmospheric circulation. J. Climate, 11, 28372857, https://doi.org/10.1175/1520-0442(1998)011<2837:RIOSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, Z.-P., N.-G. Wu, Y.-R. Feng, L. Lin, Z. Yuan, and B. Chen, 2007: A quantitative diagnosis for the mechanisms of spring droughts in South China (in Chinese). Chin. J. Atmos. Sci., 31, 12231236, https://doi.org/10.3878/j.issn.1006-9895.2007.06.17.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 12851304, https://doi.org/10.1175/JCLI4068.1.

    • Search Google Scholar
    • Export Citation
  • Wu, R., Z.-Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, X., and J. Mao, 2016: Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific decadal oscillation. Climate Dyn., 47, 32033220, https://doi.org/10.1007/s00382-016-3021-y.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., X. Li, Y. Li, and Y. Li, 2016: Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation. J. Climate, 29, 27972813, https://doi.org/10.1175/JCLI-D-15-0128.1.

    • Search Google Scholar
    • Export Citation
  • Xin, X., R. Yu, T. Zhou, and B. Wang, 2006: Drought in late spring of South China in recent decades. J. Climate, 19, 31973206, https://doi.org/10.1175/JCLI3794.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K., Q.-L. Huang, C.-Y. Tam, W. Wang, S. Chen, and C. Zhu, 2019a: Roles of tropical SST patterns during two types of ENSO in modulating wintertime rainfall over southern China. Climate Dyn., 52, 523538, https://doi.org/10.1007/s00382-018-4170-y.

    • Search Google Scholar
    • Export Citation
  • Xu, K., W. Wang, B. Liu, and C. Zhu, 2019b: Weakening of the El Niño amplitude since the late 1990s and its link to decadal change in the North Pacific climate. Int. J. Climatol., 39, 41254138, https://doi.org/10.1002/joc.6063.

    • Search Google Scholar
    • Export Citation
  • Ye, K., R. Wu, and Y. Liu, 2015: Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s. J. Geophys. Res. Atmos., 120, 27382753, https://doi.org/10.1002/2015JD023148.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., J.-G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113, https://doi.org/10.1029/2010JD013996.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophys. Res. Lett., 45, 66116618, https://doi.org/10.1029/2018GL077664.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., and J. Sun, 2022: Impacts of a tripolar sea surface temperature pattern over tropical-North Pacific on interannual variations of spring extreme consecutive dry days over southern China. J. Geophys. Res. Atmos., 127, e2021JD036281, https://doi.org/10.1029/2021JD036281.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and J. Sun, 2018: Enhancement of the spring East China precipitation response to tropical sea surface temperature variability. Climate Dyn., 51, 30093021, https://doi.org/10.1007/s00382-017-4061-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and J. Sun, 2019: Increased predictability of spring precipitation over central East China around the late 1970s. J. Climate, 32, 35993614, https://doi.org/10.1175/JCLI-D-18-0466.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and J. Sun, 2021: Impact of October snow cover in central Siberia on the following spring extreme precipitation frequency in southern China. Front. Earth Sci., 9, 785601, https://doi.org/10.3389/feart.2021.785601.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., J. Sun, and Y. Gao, 2022: Possible influence and predictive value of preceding winter sea ice anomalies in the Davis Strait-Baffin Bay for spring extreme precipitation frequency in eastern China (in Chinese). Earth Sci. Front, 29, 401409, https://doi.org/10.13745/j.esf.sf.2021.9.60.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Search Google Scholar
    • Export Citation
  • Zhou, B.-T., 2013: Weakening of winter North Atlantic Oscillation signal in spring precipitation over southern China. Atmos. Oceanic Sci. Lett., 6, 248252, https://doi.org/10.3878/j.issn.1674-2834.13.0010.

    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., 2011: Impact of East Asian winter monsoon on rainfall over southeastern China and its dynamical process. Int. J. Climatol., 31, 677686, https://doi.org/10.1002/joc.2101.

    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., and R. Wu, 2010: Respective impacts of East Asia winter monsoon and ENSO on winter rainfall in China. J. Geophys. Res., 115, D02107, https://doi.org/10.1029/2009JD012502.

    • Search Google Scholar
    • Export Citation
  • Zhu, Z., T. Li, and J. He, 2014: Out-of-phase relationship between boreal spring and summer decadal rainfall changes in southern China. J. Climate, 27, 10831099, https://doi.org/10.1175/JCLI-D-13-00180.1.

    • Search Google Scholar
    • Export Citation
  • Zou, Q., R. Ding, J. Li, Y.-h. Tseng, Z. Hou, T. Wen, and K. Ji, 2020: Is the North Pacific Victoria mode a predictor of winter rainfall over South China? J. Climate, 33, 88338847, https://doi.org/10.1175/JCLI-D-19-0789.1.

    • Search Google Scholar
    • Export Citation
  • Zuo, Z., R. Zhang, and B. Wu, 2012: Inter-decadal variations of springtime rainfall over southern China mainland for 1979–2004 and its relationship with Eurasian snow. Sci. China Earth Sci., 55, 271278, https://doi.org/10.1007/s11430-011-4337-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1185 1185 72
Full Text Views 188 189 33
PDF Downloads 208 208 37