Projections of Large-Scale Atmospheric Circulation Patterns and Associated Temperature and Precipitation over the Pacific Northwest Using CMIP6 Models

Graham P. Taylor aDepartment of Geography, Portland State University, Portland, Oregon

Search for other papers by Graham P. Taylor in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-1001-8442
,
Paul C. Loikith aDepartment of Geography, Portland State University, Portland, Oregon

Search for other papers by Paul C. Loikith in
Current site
Google Scholar
PubMed
Close
,
Hugo Kyo Lee bJet Propulsion Laboratory/California Institute of Technology, Pasadena, California

Search for other papers by Hugo Kyo Lee in
Current site
Google Scholar
PubMed
Close
,
Benjamin Lintner cDepartment of Environmental Sciences, Rutgers University, New Brunswick, New Jersey

Search for other papers by Benjamin Lintner in
Current site
Google Scholar
PubMed
Close
, and
Christina M. Aragon dWater Resources Engineering, Oregon State University, Corvallis, Oregon

Search for other papers by Christina M. Aragon in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Climate model projections of atmospheric circulation patterns, their frequency, and associated temperature and precipitation anomalies under a high-end global warming scenario are assessed over the Pacific Northwest of North America for the final three decades of the twenty-first century. Model simulations are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) and circulation patterns are identified using the self-organizing maps (SOMs) approach, applied to 500-hPa geopotential height (Z500) anomalies. Overall, the range of projected circulation patterns is similar to that in the current climate, especially in winter, whereas in summer the models project a general reduction in the magnitude of Z500 anomalies. Significant changes in pattern frequencies are also projected in summer, with an overall decrease in the frequency of patterns with large Z500 anomalies. In winter, patterns historically associated with anomalously cold weather in northern latitudes are projected to warm the most, and in summer the largest temperature increases are projected over inland areas. Precipitation is found to increase across all seasons and most SOM patterns. However, some summer patterns that are associated with above-average precipitation in the current climate are projected to become significantly drier by the end of the century.

Significance Statement

This paper uses a novel method to analyze projections of large-scale atmospheric circulation over the Pacific Northwest of North America, reducing the uncertainty of changes to the circulation patterns over the region under a high-emissions scenario of global warming.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Graham P. Taylor, graham.taylor@pdx.edu

Abstract

Climate model projections of atmospheric circulation patterns, their frequency, and associated temperature and precipitation anomalies under a high-end global warming scenario are assessed over the Pacific Northwest of North America for the final three decades of the twenty-first century. Model simulations are from phase 6 of the Coupled Model Intercomparison Project (CMIP6) and circulation patterns are identified using the self-organizing maps (SOMs) approach, applied to 500-hPa geopotential height (Z500) anomalies. Overall, the range of projected circulation patterns is similar to that in the current climate, especially in winter, whereas in summer the models project a general reduction in the magnitude of Z500 anomalies. Significant changes in pattern frequencies are also projected in summer, with an overall decrease in the frequency of patterns with large Z500 anomalies. In winter, patterns historically associated with anomalously cold weather in northern latitudes are projected to warm the most, and in summer the largest temperature increases are projected over inland areas. Precipitation is found to increase across all seasons and most SOM patterns. However, some summer patterns that are associated with above-average precipitation in the current climate are projected to become significantly drier by the end of the century.

Significance Statement

This paper uses a novel method to analyze projections of large-scale atmospheric circulation over the Pacific Northwest of North America, reducing the uncertainty of changes to the circulation patterns over the region under a high-emissions scenario of global warming.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Graham P. Taylor, graham.taylor@pdx.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.6124 MB)
Save
  • Abatzoglou, J. T., D. E. Rupp, and P. W. Mote, 2014: Seasonal climate variability and change in the Pacific Northwest of the United States. J. Climate, 27, 21252142, https://doi.org/10.1175/JCLI-D-13-00218.1.

    • Search Google Scholar
    • Export Citation
  • Agel, L., M. Barlow, F. Colby, H. Binder, J. L. Catto, A. Hoell, and J. Cohen, 2019: Dynamical analysis of extreme precipitation in the US northeast based on large-scale meteorological patterns. Climate Dyn., 52, 17391760, https://doi.org/10.1007/s00382-018-4223-2.

    • Search Google Scholar
    • Export Citation
  • Aragon, C. M., P. C. Loikith, N. McCullar, and A. Mandilag, 2020: Connecting local-scale heavy precipitation to large-scale meteorological patterns over Portland, Oregon. Int. J. Climatol., 40, 47634780, https://doi.org/10.1002/joc.6487.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., and M. Rummukainen, 2011: Challenges in regional-scale climate modeling. Bull. Amer. Meteor. Soc., 92, 365368, https://doi.org/10.1175/2010BAMS2971.1.

    • Search Google Scholar
    • Export Citation
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv., 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 19241946, https://doi.org/10.1175/1520-0469(1992)049<1924:TMOLFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2016: Projected changes in western U.S. large-scale summer synoptic circulations and variability in CMIP5 models. J. Climate, 29, 59655978, https://doi.org/10.1175/JCLI-D-15-0598.1.

    • Search Google Scholar
    • Export Citation
  • Bu, L., Z. Zuo, and N. An, 2022: Evaluating boreal summer circulation patterns of CMIP6 climate models over the Asian region. Climate Dyn., 58, 427441, https://doi.org/10.1007/s00382-021-05914-6.

    • Search Google Scholar
    • Export Citation
  • Bumbaco, K. A., K. D. Dello, and N. A. Bond, 2013: History of Pacific Northwest heat waves: Synoptic pattern and trends. J. Appl. Meteor. Climatol., 52, 16181631, https://doi.org/10.1175/JAMC-D-12-094.1.

    • Search Google Scholar
    • Export Citation
  • Casola, J. H., and J. M. Wallace, 2007: Identifying weather regimes in the wintertime 500-hPa geopotential height field for the Pacific–North American sector using a limited-contour clustering technique. J. Appl. Meteor. Climatol., 46, 16191630, https://doi.org/10.1175/JAM2564.1.

    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. M. Glisan, J. J. Cassano, W. J. G. Gutowski Jr., and M. W. Seefeldt, 2015: Self-organizing map analysis of widespread temperature extremes in Alaska and Canada. Climate Res., 62, 199218, https://doi.org/10.3354/cr01274.

    • Search Google Scholar
    • Export Citation
  • Cassano, J. J., P. Uotila, and A. Lynch, 2006: Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, Part 1: Arctic. Int. J. Climatol., 26, 10271049, https://doi.org/10.1002/joc.1306.

    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of midlatitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 82598268, https://doi.org/10.1002/2016GL070309.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 1999: Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. J. Climate, 12, 15061523, https://doi.org/10.1175/1520-0442(1999)012<1506:LSCACT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavazos, T., 2000: Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J. Climate, 13, 17181732, https://doi.org/10.1175/1520-0442(2000)013<1718:USOMTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Collow, A. B. M., M. G. Bosilovich, and R. D. Koster, 2016: Large-scale influences on summertime extreme precipitation in the northeastern United States. J. Hydrometeor., 17, 30453061, https://doi.org/10.1175/JHM-D-16-0091.1.

    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Search Google Scholar
    • Export Citation
  • Crimmins, M. A., 2006: Synoptic climatology of extreme fire-weather conditions across the southwest United States. Int. J. Climatol., 26, 10011016, https://doi.org/10.1002/joc.1300.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 35893606, https://doi.org/10.1175/JCLI3816.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2021: Linking global to regional climate change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1363–1512.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Ferber, G. K., C. F. Mass, G. M. Lackmann, and M. W. Patnoe, 1993: Snowstorms over the Puget Sound lowlands. Wea. Forecasting, 8, 481504, https://doi.org/10.1175/1520-0434(1993)008<0481:SOTPSL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2015: Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett., 10, 014005, https://doi.org/10.1088/1748-9326/10/1/014005.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., S. J. Vavrus, and J. Cohen, 2017: Amplified Arctic warming and mid-latitude weather: New perspectives on emerging connections. Wiley Interdiscip. Rev.: Climate Change, 8, e474, https://doi.org/10.1002/wcc.474.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., N. Skific, and S. J. Vavrus, 2020: Increased persistence of large-scale circulation regimes over Asia in the era of amplified Arctic warming, past and future. Sci. Rep., 10, 14953, https://doi.org/10.1038/s41598-020-71945-4.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., N. Skific, S. J. Vavrus, and J. Cohen, 2022: Measuring “weather whiplash” events in North America: A new large-scale regime approach. J. Geophys. Res. Atmos., 127, e2022JD036717, https://doi.org/10.1029/2022JD036717.

    • Search Google Scholar
    • Export Citation
  • Gao, X., C. A. Schlosser, P. Xie, E. Monier, and D. Entekhabi, 2014: An analogue approach to identify heavy precipitation events: Evaluation and application to CMIP5 climate models in the United States. J. Climate, 27, 59415963, https://doi.org/10.1175/JCLI-D-13-00598.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., S. E. Perkins‐Kirkpatrick, and J. A. Renwick, 2016: Projected changes in synoptic weather patterns over New Zealand examined through self-organizing maps. Int. J. Climatol., 36, 39343948, https://doi.org/10.1002/joc.4604.

    • Search Google Scholar
    • Export Citation
  • Gibson, P. B., A. J. Pitman, R. Lorenz, and S. E. Perkins-Kirkpatrick, 2017: The role of circulation and land surface conditions in current and future Australian heat waves. J. Climate, 30, 99339948, https://doi.org/10.1175/JCLI-D-17-0265.1.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., 2013: Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern. Climate Dyn., 41, 11871197, https://doi.org/10.1007/s00382-013-1668-1.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and G. Faure, 2008: Composite predictor maps of extraordinary weather events in the Sacramento, California, region. Wea. Forecasting, 23, 313335, https://doi.org/10.1175/2007WAF2006055.1.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and R. Zhang, 2017: Synoptic analysis of cold air outbreaks over the California Central Valley. J. Climate, 30, 94179433, https://doi.org/10.1175/JCLI-D-17-0167.1.

    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling, and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 287–422.

  • Hewitson, B. C., and R. G. Crane, 2002: Self-organizing maps: Applications to synoptic climatology. Climate Res., 22, 1326, https://doi.org/10.3354/cr022013.

    • Search Google Scholar
    • Export Citation
  • Horton, R. M., J. S. Mankin, C. Lesk, E. Coffel, and C. Raymond, 2016: A review of recent advances in research on extreme heat events. Curr. Climate Change Rep., 2, 242259, https://doi.org/10.1007/s40641-016-0042-x.

    • Search Google Scholar
    • Export Citation
  • Huang, X., and P. A. Ullrich, 2017: The changing character of twenty-first-century precipitation over the western United States in the variable-resolution CESM. J. Climate, 30, 75557575, https://doi.org/10.1175/JCLI-D-16-0673.1.

    • Search Google Scholar
    • Export Citation
  • Huguenin, M. F., E. M. Fischer, S. Kotlarski, S. C. Scherrer, C. Schwierz, and R. Knutti, 2020: Lack of change in the projected frequency and persistence of atmospheric circulation types over Central Europe. Geophys. Res. Lett., 47, e2019GL086132, https://doi.org/10.1029/2019GL086132.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Search Google Scholar
    • Export Citation
  • Jung, C., and G. M. Lackmann, 2021: The response of extratropical transition of tropical cyclones to climate change: Quasi-idealized numerical experiments. J. Climate, 34, 43614381, https://doi.org/10.1175/JCLI-D-20-0543.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., and J. R. Gyakum, 1999: Heavy cold-season precipitation in the northwestern United States: Synoptic climatology and an analysis of the flood of 17–18 January 1986. Wea. Forecasting, 14, 687700, https://doi.org/10.1175/1520-0434(1999)014<0687:HCSPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 47614784, https://doi.org/10.1175/JCLI-D-11-00575.1.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, K. Frieler, A. V. Eliseev, and A. Levermann, 2014: Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett., 9, 084002, https://doi.org/10.1088/1748-9326/9/8/084002.

    • Search Google Scholar
    • Export Citation
  • Lennard, C., and G. Hegerl, 2015: Relating changes in synoptic circulation to the surface rainfall response using self-organising maps. Climate Dyn., 44, 861879, https://doi.org/10.1007/s00382-014-2169-6.

    • Search Google Scholar
    • Export Citation
  • Liu, P., and Coauthors, 2018: Climatology of tracked persistent maxima of 500-hPa geopotential height. Climate Dyn., 51, 701717, https://doi.org/10.1007/s00382-017-3950-0.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2012: Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. J. Climate, 25, 72667281, https://doi.org/10.1175/JCLI-D-11-00709.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and A. J. Broccoli, 2015: Comparison between observed and model-simulated atmospheric circulation patterns associated with extreme temperature days over North America using CMIP5 historical simulations. J. Climate, 28, 20632079, https://doi.org/10.1175/JCLI-D-13-00544.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., and D. A. Kalashnikov, 2023: Meteorological analysis of the Pacific Northwest June 2021 heatwave. Mon. Wea. Rev., 151, 13031319, https://doi.org/10.1175/MWR-D-22-0284.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., B. R. Lintner, and A. Sweeney, 2017: Characterizing large-scale meteorological patterns and associated temperature and precipitation extremes over the northwestern United States using self-organizing maps. J. Climate, 30, 28292847, https://doi.org/10.1175/JCLI-D-16-0670.1.

    • Search Google Scholar
    • Export Citation
  • Loikith, P. C., D. Singh, and G. P. Taylor, 2022: Projected changes in atmospheric ridges over the Pacific–North American region using CMIP6 models. J. Climate, 35, 51515171, https://doi.org/10.1175/JCLI-D-21-0794.1.

    • Search Google Scholar
    • Export Citation
  • Mahoney, K., D. Swales, M. J. Mueller, M. Alexander, M. Hughes, and K. Malloy, 2018: An examination of an inland-penetrating atmospheric river flood event under potential future thermodynamic conditions. J. Climate, 31, 62816297, https://doi.org/10.1175/JCLI-D-18-0118.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., E. P. Salathé, R. Steed, and J. Baars, 2022: The mesoscale response to global warming over the Pacific Northwest evaluated using a regional climate model ensemble. J. Climate, 35, 20352053, https://doi.org/10.1175/JCLI-D-21-0061.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, H. D., and S. Wynes, 2022: Current global efforts are insufficient to limit warming to 1.5°C. Science, 376, 14041409, https://doi.org/10.1126/science.abo3378.

    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., C. S. Wittman, M. A. Miller, S. E. Yuter, and S. P. de Szoeke, 2018: Joint synoptic and cloud variability over the northeast Atlantic near the Azores. J. Appl. Meteor. Climatol., 57, 12731290, https://doi.org/10.1175/JAMC-D-17-0211.1.

    • Search Google Scholar
    • Export Citation
  • Mo, R., H. Lin, and F. Vitart, 2022: An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun Earth Environ, 3, 127, https://doi.org/10.1038/s43247-022-00459-w.

    • Search Google Scholar
    • Export Citation
  • Neal, E., C. S. Y. Huang, and N. Nakamura, 2022: The 2021 Pacific Northwest heat wave and associated blocking: Meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett., 49, e2021GL097699, https://doi.org/10.1029/2021GL097699.

    • Search Google Scholar
    • Export Citation
  • Radić, V., A. J. Cannon, B. Menounos, and N. Gi, 2015: Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmos., 120, 92799302, https://doi.org/10.1002/2015JD023279.

    • Search Google Scholar
    • Export Citation
  • Reusch, D. B., R. B. Alley, and B. C. Hewitson, 2005: Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr., 29, 188212, https://doi.org/10.1080/789610199.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2020: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. J. Climate, 33, 25572583, https://doi.org/10.1175/JCLI-D-19-0639.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, C. D. W., K. Kornhuber, S. E. Perkins-Kirkpatrick, P. C. Loikith, and D. Singh, 2022: Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J. Climate, 35, 10631078, https://doi.org/10.1175/JCLI-D-21-0200.1.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., J. T. Abatzoglou, and P. W. Mote, 2017a: Projections of 21st century climate of the Columbia River basin. Climate Dyn., 49, 17831799, https://doi.org/10.1007/s00382-016-3418-7.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., S. Li, P. W. Mote, K. M. Shell, N. Massey, S. N. Sparrow, D. C. H. Wallom, and M. R. Allen, 2017b: Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Climate Dyn., 48, 21912213, https://doi.org/10.1007/s00382-016-3200-x.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, https://doi.org/10.1029/2006GL026882.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., P. W. Mote, and M. W. Wiley, 2007: Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States Pacific Northwest. Int. J. Climatol., 27, 16111621, https://doi.org/10.1002/joc.1540.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., A. F. Hamlet, C. F. Mass, S.-Y. Lee, M. Stumbaugh, and R. Steed, 2014: Estimates of twenty-first-century flood risk in the Pacific Northwest based on regional climate model simulations. J. Hydrometeor., 15, 18811899, https://doi.org/10.1175/JHM-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Schlef, K. E., H. Moradkhani, and U. Lall, 2019: Atmospheric circulation patterns associated with extreme United States floods identified via machine learning. Sci. Rep., 9, 7171, https://doi.org/10.1038/s41598-019-43496-w.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Search Google Scholar
    • Export Citation
  • Slinskey, E. A., P. C. Loikith, D. E. Waliser, B. Guan, and A. Martin, 2020: A climatology of atmospheric rivers and associated precipitation for the seven U.S. national climate assessment regions. J. Hydrometeor., 21, 24392456, https://doi.org/10.1175/JHM-D-20-0039.1.

    • Search Google Scholar
    • Export Citation
  • Stuivenvolt Allen, J., S.-Y. S. Wang, M. D. LaPlante, and J.-H. Yoon, 2021: Three western Pacific typhoons strengthened fire weather in the recent northwest U.S. conflagration. Geophys. Res. Lett., 48, e2020GL091430, https://doi.org/10.1029/2020GL091430.

    • Search Google Scholar
    • Export Citation
  • Swales, D., M. Alexander, and M. Hughes, 2016: Examining moisture pathways and extreme precipitation in the U.S. Intermountain West using self-organizing maps. Geophys. Res. Lett., 43, 17271735, https://doi.org/10.1002/2015GL067478.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. P., P. C. Loikith, C. M. Aragon, H. Lee, and D. E. Waliser, 2023: CMIP6 model fidelity at simulating large-scale atmospheric circulation patterns and associated temperature and precipitation over the Pacific Northwest. Climate Dyn., 60, 21992218, https://doi.org/10.1007/s00382-022-06410-1.

    • Search Google Scholar
    • Export Citation
  • Teng, H., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Search Google Scholar
    • Export Citation
  • USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I. D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 470 pp.

  • Wang, M., P. Ullrich, and D. Millstein, 2020: Future projections of wind patterns in California with the variable-resolution CESM: A clustering analysis approach. Climate Dyn., 54, 25112531, https://doi.org/10.1007/s00382-020-05125-5.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Whitfield, P. H., R. D. Moore, S. W. Fleming, and A. Zawadzki, 2010: Pacific Decadal Oscillation and the hydroclimatology of western Canada—Review and prospects. Can. Water Resour. J., 35 (1), 128, https://doi.org/10.4296/cwrj3501001.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., N. P. Gillett, P. D. Jones, and P. W. Thorne, 2007: Attribution of observed surface humidity changes to human influence. Nature, 449, 710712, https://doi.org/10.1038/nature06207.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1792 1792 49
Full Text Views 244 244 5
PDF Downloads 255 255 5