The Role of Local and Remote Processes for Wintertime Surface Energy Budget Extremes over Arctic Sea Ice

Lukas Papritz aInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2047-9544
,
Sonja Murto bDepartment of Meteorology, Stockholm University, Stockholm, Sweden
cBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Sonja Murto in
Current site
Google Scholar
PubMed
Close
,
Matthias Röthlisberger aInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Matthias Röthlisberger in
Current site
Google Scholar
PubMed
Close
,
Rodrigo Caballero bDepartment of Meteorology, Stockholm University, Stockholm, Sweden
cBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Rodrigo Caballero in
Current site
Google Scholar
PubMed
Close
,
Gabriele Messori bDepartment of Meteorology, Stockholm University, Stockholm, Sweden
cBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
dDepartment of Earth Sciences and Centre of Natural Hazards and Disaster Science, Uppsala University, Uppsala, Sweden

Search for other papers by Gabriele Messori in
Current site
Google Scholar
PubMed
Close
,
Gunilla Svensson bDepartment of Meteorology, Stockholm University, Stockholm, Sweden
cBolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Search for other papers by Gunilla Svensson in
Current site
Google Scholar
PubMed
Close
, and
Heini Wernli aInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Heini Wernli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Arctic warm extremes and anomalous sea ice melting have been linked to episodic injections of warm and moist air from midlatitudes, as well as airmass transformations inside the Arctic. However, the relative importance of remote and local processes for such events remains unclear. Here, we focus on events with extreme positive daily-mean surface energy budget (SEB) anomalies over Arctic sea ice in ERA5 data during extended winters (November–March during 1979–2020). Kinematic backward trajectories from the tropospheric column collocated with the SEB anomalies show that near-surface air is of Arctic origin, whereas air farther aloft is transported poleward from the midlatitudes and ascends. Despite the different origin of the air, the entire tropospheric column shows pronounced potential temperature anomalies (on the order of 10 K) building up along air-parcel trajectories over 2–4 days. Quantifying the contributions of horizontal and vertical transport as well as diabatic processes to the generation of these potential temperature anomalies emphasizes the relevance of horizontal advection across the climatological potential temperature gradient for the generation of the anomalies at all levels. Anomalies aloft are further enhanced by latent heating and those near the surface by subsidence, respectively. Surface heat fluxes over subpolar and polar oceans are key for warming and moistening the near-surface air of predominantly Arctic origin and maintaining a positive potential temperature anomaly, which due to its proximity to the surface unfolds the strongest impact on the SEB. This suggests that Arctic airmasses and their local transformations are crucial for generating the most extreme SEB anomalies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lukas Papritz, lukas.papritz@env.ethz.ch

Abstract

Arctic warm extremes and anomalous sea ice melting have been linked to episodic injections of warm and moist air from midlatitudes, as well as airmass transformations inside the Arctic. However, the relative importance of remote and local processes for such events remains unclear. Here, we focus on events with extreme positive daily-mean surface energy budget (SEB) anomalies over Arctic sea ice in ERA5 data during extended winters (November–March during 1979–2020). Kinematic backward trajectories from the tropospheric column collocated with the SEB anomalies show that near-surface air is of Arctic origin, whereas air farther aloft is transported poleward from the midlatitudes and ascends. Despite the different origin of the air, the entire tropospheric column shows pronounced potential temperature anomalies (on the order of 10 K) building up along air-parcel trajectories over 2–4 days. Quantifying the contributions of horizontal and vertical transport as well as diabatic processes to the generation of these potential temperature anomalies emphasizes the relevance of horizontal advection across the climatological potential temperature gradient for the generation of the anomalies at all levels. Anomalies aloft are further enhanced by latent heating and those near the surface by subsidence, respectively. Surface heat fluxes over subpolar and polar oceans are key for warming and moistening the near-surface air of predominantly Arctic origin and maintaining a positive potential temperature anomaly, which due to its proximity to the surface unfolds the strongest impact on the SEB. This suggests that Arctic airmasses and their local transformations are crucial for generating the most extreme SEB anomalies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lukas Papritz, lukas.papritz@env.ethz.ch

Supplementary Materials

    • Supplemental Materials (ZIP 193.94 MB)
Save
  • Baggett, C., S. Lee, and S. Feldstein, 2016: An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci., 73, 43294347, https://doi.org/10.1175/JAS-D-16-0033.1.

    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, C. M. Grams, H. Joos, S. Pfahl, and H. Wernli, 2017: Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophys. Res. Lett., 44, 12 02812 036, https://doi.org/10.1002/2017GL075841.

    • Search Google Scholar
    • Export Citation
  • Boisvert, L. N., A. A. Petty, and J. C. Stroeve, 2016: The impact of the extreme winter 2015/16 Arctic cyclone on the Barents–Kara Seas. Mon. Wea. Rev., 144, 42794287, https://doi.org/10.1175/MWR-D-16-0234.1.

    • Search Google Scholar
    • Export Citation
  • Bozem, H., and Coauthors, 2019: Characterization of transport regimes and the polar dome during Arctic spring and summer using in-situ aircraft measurements. Atmos. Chem. Phys., 19, 15 04915 071, https://doi.org/10.5194/acp-19-15049-2019.

    • Search Google Scholar
    • Export Citation
  • Clark, J. P., E. E. Clothiaux, S. B. Feldstein, and S. Lee, 2021: Drivers of global clear sky surface downwelling longwave irradiance trends from 1984 to 2017. Geophys. Res. Lett., 48, e2021GL093961, https://doi.org/10.1029/2021GL093961.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, M. C. Serreze, and E. E. Ebert, 1995: Water vapor feedback over the Arctic Ocean. J. Geophys. Res., 100, 14 22314 229, https://doi.org/10.1029/95JD00824.

    • Search Google Scholar
    • Export Citation
  • Dada, L., and Coauthors, 2022: A central Arctic extreme aerosol event triggered by a warm air-mass intrusion. Nat. Commun., 13, 5290, https://doi.org/10.1038/s41467-022-32872-2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. G., G. Lesins, C. P. Thackray, C. Perro, G. J. Nott, T. J. Duck, R. Damoah, and J. R. Drummond, 2011: Water vapor intrusions into the high Arctic during winter. Geophys. Res. Lett., 38, L12806, https://doi.org/10.1029/2011GL047493.

    • Search Google Scholar
    • Export Citation
  • Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. J. Climate, 29, 50615081, https://doi.org/10.1175/JCLI-D-15-0559.1.

    • Search Google Scholar
    • Export Citation
  • Fearon, M. G., J. D. Doyle, D. R. Ryglicki, P. M. Finocchio, and M. Sprenger, 2021: The role of cyclones in moisture transport into the Arctic. Geophys. Res. Lett., 48, e2020GL090353, https://doi.org/10.1029/2020GL090353.

    • Search Google Scholar
    • Export Citation
  • Fletcher, J., S. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, https://doi.org/10.1175/JCLI-D-15-0268.1.

    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing Arctic sea ice. Eos, Trans. Amer. Geophys. Union, 87, 509511, https://doi.org/10.1029/2006EO460001.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Burtu, 2016: Arctic amplification enhanced by latent energy transport of atmospheric planetary waves. Quart. J. Roy. Meteor. Soc., 142, 20462054, https://doi.org/10.1002/qj.2802.

    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., B. S. Barrett, L. J. Wachowicz, K. S. Mattingly, J. R. Preece, and T. L. Mote, 2021: Local and remote atmospheric circulation drivers of Arctic change: A review. Front. Earth Sci., 9, 709896, https://doi.org/10.3389/feart.2021.709896.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hofsteenge, M. G., R. G. Graversen, J. H. Rydsaa, and Z. Rey, 2022: The impact of atmospheric Rossby waves and cyclones on the Arctic sea ice variability. Climate Dyn., 59, 579594, https://doi.org/10.1007/s00382-022-06145-z.

    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graversen, and M. Tjernström, 2013: Springtime atmospheric energy transport and the control of Arctic summer sea-ice extent. Nat. Climate Change, 3, 744748, https://doi.org/10.1038/nclimate1884.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Search Google Scholar
    • Export Citation
  • Liniger, M. A., and H. C. Davies, 2003: Substructure of a map streamer. Quart. J. Roy. Meteor. Soc., 129, 633651, https://doi.org/10.1256/qj.02.28.

    • Search Google Scholar
    • Export Citation
  • Luo, B., D. Luo, L. Wu, L. Zhong, and I. Simmonds, 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, https://doi.org/10.1088/1748-9326/aa69d0.

    • Search Google Scholar
    • Export Citation
  • Messori, G., C. Woods, and R. Caballero, 2018: On the drivers of wintertime temperature extremes in the high Arctic. J. Climate, 31, 15971618, https://doi.org/10.1175/JCLI-D-17-0386.1.

    • Search Google Scholar
    • Export Citation
  • Mortin, J., G. Svensson, R. G. Graversen, M.-L. Kapsch, J. C. Stroeve, and L. N. Boisvert, 2016: Melt onset over Arctic sea ice controlled by atmospheric moisture transport. Geophys. Res. Lett., 43, 66366642, https://doi.org/10.1002/2016GL069330.

    • Search Google Scholar
    • Export Citation
  • Murto, S., R. Caballero, G. Svensson, and L. Papritz, 2022: Interaction between Atlantic cyclones and Eurasian atmospheric blocking drives wintertime warm extremes in the high Arctic. Wea. Climate Dyn., 3, 2144, https://doi.org/10.5194/wcd-3-21-2022.

    • Search Google Scholar
    • Export Citation
  • Murto, S., L. Papritz, G. Messori, R. Caballero, G. Svensson, and H. Wernli, 2023: Extreme surface energy budget anomalies in the high Arctic in winter. J. Climate, 36, 35913609, https://doi.org/10.1175/JCLI-D-22-0209.1.

    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, T. Vihma, J. Sedlar, and R. Graversen, 2019: Atmospheric moisture transport between mid-latitudes and the Arctic: Regional, seasonal and vertical distributions. Int. J. Climatol., 39, 28622879, https://doi.org/10.1002/joc.5988.

    • Search Google Scholar
    • Export Citation
  • Nygård, T., R. G. Graversen, P. Uotila, T. Naakka, and T. Vihma, 2019: Strong dependence of wintertime Arctic moisture and cloud distributions on atmospheric large-scale circulation. J. Climate., 32, 87718790, https://doi.org/10.1175/JCLI-D-19-0242.1.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., and J. M. Wallace, 2012: The role of summer surface wind anomalies in the summer Arctic sea ice extent in 2010 and 2011. Geophys. Res. Lett., 39, L09704, https://doi.org/10.1029/2012GL051330.

    • Search Google Scholar
    • Export Citation
  • Ohmura, A., 2001: Physical basis for the temperature-based melt-index method. J. Appl. Meteor. Climatol., 40, 753761, https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., P. A. Newman, D. W. Waugh, M. Holzer, L. D. Oman, F. Li, and L. M. Polvani, 2015: Airmass origin in the Arctic. Part I: Seasonality. J. Climate, 28, 49975014, https://doi.org/10.1175/JCLI-D-14-00720.1.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., 2020: Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features. J. Climate, 33, 9931016, https://doi.org/10.1175/JCLI-D-19-0638.1.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2017: A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic seas and their role in shaping air-sea heat fluxes. J. Climate, 30, 27172737, https://doi.org/10.1175/JCLI-D-16-0605.1.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., and E. Dunn-Sigouin, 2020: What configuration of the atmospheric circulation drives extreme net and total moisture transport into the Arctic. Geophys. Res. Lett., 47, e2020GL089769, https://doi.org/10.1029/2020GL089769.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., M. D. Shupe, D. Perovich, and A. Solomon, 2017: Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: Observations of midwinter SHEBA conditions. Climate Dyn., 49, 13411364, https://doi.org/10.1007/s00382-016-3383-1.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., and Coauthors, 2018: Role of air-mass transformations in exchange between the Arctic and mid-latitudes. Nat. Geosci., 11, 805812, https://doi.org/10.1038/s41561-018-0234-1.

    • Search Google Scholar
    • Export Citation
  • Richter-Menge, J., and M. L. Druckenmiller, 2020: The Arctic [in “State of the Climate in 2019”]. Bull. Amer. Meteor. Soc., 101 (Suppl.), S239S285, https://doi.org/10.1175/2020BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and L. Papritz, 2023a: A global quantification of the physical processes leading to near-surface cold extremes. Geophys. Res. Lett., 50, e2022GL101670, https://doi.org/10.1029/2022GL101670.

    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., and L. Papritz, 2023b: Quantifying the physical processes leading to atmospheric hot extremes at a global scale. Nat. Geosci., 16, 210216, https://doi.org/10.1038/s41561-023-01126-1.

    • Search Google Scholar
    • Export Citation
  • Rydsaa, J. H., R. G. Graversen, T. I. H. Heiskanen, and P. J. Stoll, 2021: Changes in atmospheric latent energy transport into the Arctic: Planetary versus synoptic scales. Quart. J. Roy. Meteor. Soc., 147, 22812292, https://doi.org/10.1002/qj.4022.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and J. M. Intrieri, 2004: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle. J. Climate, 17, 616628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2007.00314.x.

    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool – version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Search Google Scholar
    • Export Citation
  • Vargas Zeppetello, L. R., A. Donohoe, and D. S. Battisti, 2019: Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett., 46, 27812789, https://doi.org/10.1029/2019GL082220.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosci., 121, 586620, https://doi.org/10.1002/2015JG003132.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and L. Papritz, 2018: Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting. Nat. Geosci., 11, 108113, https://doi.org/10.1038/s41561-017-0041-0.

    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Search Google Scholar
    • Export Citation
  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 47174721, https://doi.org/10.1002/grl.50912.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 518 377 24
Full Text Views 276 187 11
PDF Downloads 337 231 18