Disentangling Dynamic from Thermodynamic Summer Ice Area Loss from Observations (1979–2021): A Potential Mechanism for a “First-Time” Ice-Free Arctic

Alice Le Guern-Lepage aDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Alice Le Guern-Lepage in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7174-4053
and
Bruno L. Tremblay aDepartment of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Bruno L. Tremblay in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice Le Guern-Lepage, alice.leguern-lepage@mail.mcgill.ca

Abstract

In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alice Le Guern-Lepage, alice.leguern-lepage@mail.mcgill.ca
Save
  • Asplin, M. G., R. Galley, D. G. Barber, and S. Prinsenberg, 2012: Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. J. Geophys. Res., 117, C06025, https://doi.org/10.1029/2011JC007221.

    • Search Google Scholar
    • Export Citation
  • Babb, D. G., R. J. Galley, S. E. L. Howell, J. C. Landy, J. C. Stroeve, and D. G. Barber, 2022: Increasing multiyear sea ice loss in the Beaufort Sea: A new export pathway for the diminishing multiyear ice cover of the Arctic Ocean. Geophys. Res. Lett., 49, e2021GL097595, https://doi.org/10.1029/2021GL097595.

    • Search Google Scholar
    • Export Citation
  • Bi, H., K. Sun, X. Zhou, H. Huang, and X. Xu, 2016: Arctic sea ice area export through the Fram Strait estimated from satellite-based data: 1988–2012. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 9, 31443157, https://doi.org/10.1109/JSTARS.2016.2584539.

    • Search Google Scholar
    • Export Citation
  • Bouchat, A., and B. Tremblay, 2014: Energy dissipation in viscous-plastic sea-ice models. J. Geophys. Res. Oceans, 119, 976994, https://doi.org/10.1002/2013JC009436.

    • Search Google Scholar
    • Export Citation
  • Brodzik, M. J., and K. W. Knowles, 2002: EASE-Grid: A versatile set of equal-area projections and grids. Discrete Global Grids: A Web Book, M. F. Goodchild and A. J. Kimerling, Eds., National Center for Geographic Information and Analysis, 98–113.

  • Brunette, C., B. Tremblay, and R. Newton, 2019: Winter coastal divergence as a predictor for the minimum sea ice extent in the Laptev Sea. J. Climate, 32, 10631080, https://doi.org/10.1175/JCLI-D-18-0169.1.

    • Search Google Scholar
    • Export Citation
  • Brunette, C., B. Tremblay, and R. Newton, 2022: A new state-dependent parameterization for the free drift of sea ice. Cryosphere, 16, 553557, https://doi.org/10.5194/tc-16-533-2022.

    • Search Google Scholar
    • Export Citation
  • Bushuk, M., M. Winton, D. B. Bonan, E. Blanchard-Wrigglesworth, and T. L. Delworth, 2020: A mechanism for the Arctic sea ice spring predictability barrier. Geophys. Res. Lett., 47, e2020GL088335, https://doi.org/10.1029/2020GL088335.

    • Search Google Scholar
    • Export Citation
  • Campbell, G. G., S. Pfirman, B. Tremblay, R. Newton, W. Meier, C. Fowler, and P. DeRepentigny, 2020: SITU: Sea ice tracking utility. NSIDC, accessed 14 June 2023, http://icemotion.labs.nsidc.org/SITU/.

  • Cavalieri, D. J., P. Gloersen, and W. J. Campbell, 1984: Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res., 89, 53555369, https://doi.org/10.1029/JD089iD04p05355.

    • Search Google Scholar
    • Export Citation
  • Chevallier, M., and D. Salas-Mélia, 2012: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A diagnostic approach with a coupled GCM. J. Climate, 25, 30253038, https://doi.org/10.1175/JCLI-D-11-00209.1.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 1986: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91, 975994, https://doi.org/10.1029/JC091iC01p00975.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2002: A rapidly declining perennial sea ice cover in the Arctic. Geophys. Res. Lett., 29, 1956, https://doi.org/10.1029/2002GL015650.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 49774993, https://doi.org/10.1175/JCLI-D-15-0755.1.

    • Search Google Scholar
    • Export Citation
  • Day, J. J., and K. I. Hodges, 2018: Growing land-sea temperature contrast and the intensification of Arctic cyclones. Geophys. Res. Lett., 45, 36733681, https://doi.org/10.1029/2018GL077587.

    • Search Google Scholar
    • Export Citation
  • DeRepentigny, P., L. B. Tremblay, R. Newton, and S. Pfirman, 2016: Patterns of sea ice retreat in the transition to a seasonally ice-free Arctic. J. Climate, 29, 69937008, https://doi.org/10.1175/JCLI-D-15-0733.1.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., J. D. Doyle, and D. P. Stern, 2022: Accelerated sea ice loss from late summer cyclones in the new Arctic. J. Climate, 35, 77517769, https://doi.org/10.1175/JCLI-D-22-0315.1.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., and Coauthors, 2019: Evaluation of six atmospheric reanalyses over Arctic Sea ice from winter to early summer. J. Climate, 32, 41214143, https://doi.org/10.1175/JCLI-D-18-0643.1.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice predictability and prediction on seasonal to decadal time-scales. Quart. J. Roy. Meteor. Soc., 142, 546561, https://doi.org/10.1002/qj.2401.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hilmer, M., and T. Jung, 2000: Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. Lett., 27, 989992, https://doi.org/10.1029/1999GL010944.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and R. Kwok, 2012: Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci., 5, 872875, https://doi.org/10.1038/ngeo1627.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and N. Kimura, 2016: Observed concentration budgets of Arctic and Antarctic sea ice. J. Climate, 29, 52415249, https://doi.org/10.1175/JCLI-D-16-0121.1.

    • Search Google Scholar
    • Export Citation
  • Hutchings, J. K., and I. G. Rigor, 2012: Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007. J. Geophys. Res., 117, C00E04, https://doi.org/10.1029/2011JC007182.

    • Search Google Scholar
    • Export Citation
  • Hutchings, J. K., and D. K. Perovich, 2015: Preconditioning of the 2007 sea-ice melt in the eastern Beaufort Sea, Arctic Ocean. Ann. Glaciol., 56, 9498, https://doi.org/10.3189/2015AoG69A006.

    • Search Google Scholar
    • Export Citation
  • Itkin, P., and T. Krumpen, 2017: Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay. Cryosphere, 11, 23832391, https://doi.org/10.5194/tc-11-2383-2017.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., S. E. Allen, F. A. McLaughlin, R. A. Woodgate, and E. C. Carmack, 2011: Changes to the near-surface waters in the Canada basin, Arctic Ocean from 1993–2009: A basin in transition. J. Geophys. Res., 116, C10008, https://doi.org/10.1029/2011JC007069.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, https://doi.org/10.1029/2008GL033451.

    • Search Google Scholar
    • Export Citation
  • Kim, R., L. B. Tremblay, C. Brunette, and R. Newton, 2021: A regional seasonal forecast model of Arctic minimum sea ice extent: Reflected solar radiation versus late winter coastal divergence. J. Climate, 34, 60976113, https://doi.org/10.1175/JCLI-D-20-0846.1.

    • Search Google Scholar
    • Export Citation
  • Krumpen, T., M. Janout, K. I. Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes, 2013: Variability and trends in Laptev Sea ice outflow between 1992–2011. Cryosphere, 7, 349363, https://doi.org/10.5194/tc-7-349-2013.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2008: Summer sea ice motion from the 18 GHz channel of AMSR-E and the exchange of sea ice between the Pacific and Atlantic sectors. Geophys. Res. Lett., 35, L03504, https://doi.org/10.1029/2007GL032692.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., 2015: Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014). Geophys. Res. Lett., 42, 75987605, https://doi.org/10.1002/2015GL065462.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 48794894, https://doi.org/10.1175/JCLI3587.1.

    • Search Google Scholar
    • Export Citation
  • Lindsay, R. W., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176, https://doi.org/10.1175/2008JCLI2521.1.

    • Search Google Scholar
    • Export Citation
  • Lukovich, J. V., J. C. Stroeve, A. Crawford, L. Hamilton, M. Tsamados, H. Heorton, and F. Massonnet, 2021: Summer extreme cyclone impacts on Arctic sea ice. J. Climate, 34, 48174834, https://doi.org/10.1175/JCLI-D-19-0925.1.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., S. Drobot, C. Fowler, W. Emery, and R. Barry, 2007a: On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett., 34, L03711, https://doi.org/10.1029/2006GL028269.

    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007b: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, https://doi.org/10.1029/2007GL032043.

    • Search Google Scholar
    • Export Citation
  • McCrystall, M. R., J. Stroeve, M. Serreze, B. C. Forbes, and J. A. Screen, 2021: New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nat. Commun., 12, 6765, https://doi.org/10.1038/s41467-021-27031-y.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1975: Ice–ocean momentum transfer for the AIDJEX ice model. AIDJEX Bull., 29, 93111.

  • Meier, W. N., J. A. Maslanik, and C. W. Fowler, 2000: Error analysis and assimilation of remotely sensed ice motion within an Arctic sea ice model. J. Geophys. Res., 105, 33393356, https://doi.org/10.1029/1999JC900268.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., G. Peng, D. J. Scott, and M. H. Savoie, 2014: Verification of a new NOAA/NSIDC passive microwave sea-ice concentration climate record. Polar Res., 33, 21004, https://doi.org/10.3402/polar.v33.21004.

    • Search Google Scholar
    • Export Citation
  • Meier, W. N., F. Fetterer, A. K. Windnagel, and S. Stewart, 2021: NOAA/NSIDC Climate data record of passive microwave sea ice concentration, version 4. National Snow and Ice Data Center, accessed 14 June 2023, https://doi.org/10.7265/efmz-2t65.

  • Nghiem, S. V., I. G. Rigor, D. K. Perovich, P. Clemente-Colón, J. W. Weatherly, and G. Neumann, 2007: Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138.

    • Search Google Scholar
    • Export Citation
  • Nikolaeva, A. J., and N. P. Sesterikov, 1970: A method of calculation of ice conditions (on the example of the Laptev Sea). Forecasting Techniques for the Arctic Seas, B. A. Krutskih, Z. M. Gudkovic, and A. L. Sokolov, Eds., Amerind Publishing, 150–230.

  • Ogi, M., and J. M. Wallace, 2007: Summer minimum Arctic sea ice extent and the associated summer atmospheric circulation. Geophys. Res. Lett., 34, L12705, https://doi.org/10.1029/2007GL029897.

    • Search Google Scholar
    • Export Citation
  • Ogi, M., I. G. Rigor, M. G. McPhee, and J. M. Wallace, 2008: Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett., 35, L24701, https://doi.org/10.1029/2008GL035672.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A (1), 19, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, https://doi.org/10.1029/2012GL053268.

    • Search Google Scholar
    • Export Citation
  • Parker, C. L., P. A. Mooney, M. A. Webster, and L. N. Boisvert, 2022: The influence of recent and future climate change on spring Arctic cyclones. Nat. Commun., 13, 6514, https://doi.org/10.1038/s41467-022-34126-7.

    • Search Google Scholar
    • Export Citation
  • Parkinson, C. L., and J. C. Comiso, 2013: On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40, 13561361, https://doi.org/10.1002/grl.50349.

    • Search Google Scholar
    • Export Citation
  • Peng, L., X. Zhang, J.-H. Kim, K.-H. Cho, B.-M. Kim, Z. Wang, and H. Tang, 2021: Role of intense Arctic storm in accelerating summer sea ice melt: An in situ observational study. Geophys. Res. Lett., 48, e2021GL092714, https://doi.org/10.1029/2021GL092714.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., B. Light, H. Eicken, K. F. Jones, K. Runciman, and S. V. Nghiem, 2007: Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett., 34, L19505, https://doi.org/10.1029/2007GL031480.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., J. A. Richeter-Menge, K. F. Jones, and B. Light, 2008: Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett., 35, L11501, https://doi.org/10.1029/2008GL034007.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., M. Mayer, S. Tietsche, and A. Y. Karpechko, 2022: Climate change fosters competing effects of dynamics and thermodynamics in seasonal predictability of Arctic sea ice. J. Climate, 35, 28492865, https://doi.org/10.1175/JCLI-D-21-0463.1.

    • Search Google Scholar
    • Export Citation
  • Rampal, P., J. Weiss, and D. Marsan, 2009: Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. J. Geophys. Res., 114, C05013, https://doi.org/10.1029/2008JC005066.

    • Search Google Scholar
    • Export Citation
  • Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvärinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3.

    • Search Google Scholar
    • Export Citation
  • Rigor, I. G., and J. M. Wallace, 2004: Variations in the age of Arctic sea-ice and summer sea-ice extent. Geophys. Res. Lett., 31, L09401, https://doi.org/10.1029/2004GL019492.

    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35, L10503, https://doi.org/10.1029/2008GL033463.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, and K. Keay, 2011: Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res., 116, D15105, https://doi.org/10.1029/2011JD015847.

    • Search Google Scholar
    • Export Citation
  • Semenov, A., X. Zhang, A. Rinke, W. Dorn, and K. Dethloff, 2019: Arctic intense summer storms and their impacts on sea ice—A regional climate modeling study. Atmosphere, 10, 218, https://doi.org/10.3390/atmos10040218.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. Stroeve, 2015: Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc., A373, 20140159, https://doi.org/10.1098/rsta.2014.0159.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., J. Stroeve, A. P. Barrett, and L. N. Boisvert, 2016: Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale. J. Geophys. Res. Atmos., 121, 11 46311 485, https://doi.org/10.1002/2016JD025161.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 57775796, https://doi.org/10.1175/2008JCLI2366.1.

    • Search Google Scholar
    • Export Citation
  • Smedsrud, L. H., A. Sirevaag, K. Kloster, A. Sorteberg, and S. Sandven, 2011: Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline. Cryosphere, 5, 821829, https://doi.org/10.5194/tc-5-821-2011.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Wea. Rev., 119, 22062223, https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Steele, M., W. Ermold, and J. Zhang, 2008: Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett., 35, L02614, https://doi.org/10.1029/2007GL031651.

    • Search Google Scholar
    • Export Citation
  • Steele, M., J. Zhang, and W. Ermold, 2010: Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt. J. Geophys. Res., 115, C11004, https://doi.org/10.1029/2009JC005849.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2018: Changing state of Arctic sea ice across all seasons. Environ. Res. Lett., 13, 103001, https://doi.org/10.1088/1748-9326/aade56.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. Serreze, S. Drobot, S. Gearheard, M. Holland, J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice extent plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 1314, https://doi.org/10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Sumata, H., R. Kwok, R. Gerdes, F. Kauker, and M. Karcher, 2015: Uncertainty of Arctic summer ice drift assessed by high-resolution SAR data. J. Geophys. Res. Oceans, 120, 52855301, https://doi.org/10.1002/2015JC010810.

    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Zhang, and X. Zhang, 2017: The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm. Quart. J. Roy. Meteor. Soc., 143, 19531966, https://doi.org/10.1002/qj.3055.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thorndike, A. S., and R. Colony, 1982: Sea ice motion in response to geostrophic winds. J. Geophys. Res., 87, 58455852, https://doi.org/10.1029/JC087iC08p05845.

    • Search Google Scholar
    • Export Citation
  • Tremblay, L. B., and L. A. Mysak, 1997: Modeling sea ice as a granular material, including the dilatancy effect. J. Phys. Oceanogr., 27, 23422360, https://doi.org/10.1175/1520-0485(1997)027%3C2342:MSIAAG%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tschudi, M., W. N. Meier, J. S. Stewart, C. Fowler, and J. Maslanik, 2019: Polar Pathfinder Daily 25 km EASE-grid sea ice motion vectors, version 4. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 14 June 2023, nsidc.org/data/nsidc-0116/versions/4.

  • Tschudi, M., J. C. Stroeve, and J. S. Stewart, 2016: Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sens., 8, 457, https://doi.org/10.3390/rs8060457.

    • Search Google Scholar
    • Export Citation
  • Tucker, W. B., III, J. W. Weatherly, D. T. Eppler, L. D. Farmer, and D. L. Bentley, 2001: Evidence for rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s. Geophys. Res. Lett., 28, 28512854, https://doi.org/10.1029/2001GL012967.

    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2020: An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dyn., 54, 27772795, https://doi.org/10.1007/s00382-020-05142-4.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. Zhang, E. Watanabe, M. Ikeda, K. Mizobata, J. E. Walsh, X. Bai, and B. Wu, 2009: Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? Geophys. Res. Lett., 36, L05706, https://doi.org/10.1029/2008GL036706.

    • Search Google Scholar
    • Export Citation
  • Watanabe, E., J. Wang, A. Sumi, and H. Hasumi, 2006: Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys. Res. Lett., 33, L23703, https://doi.org/10.1029/2006GL028112.

    • Search Google Scholar
    • Export Citation
  • Williams, J., B. Tremblay, R. Newton, and R. Allard, 2016: Dynamic preconditioning of the minimum September sea-ice extent. J. Climate, 29, 58795891, https://doi.org/10.1175/JCLI-D-15-0515.1.

    • Search Google Scholar
    • Export Citation
  • Williams, J., B. Tremblay, and J. F. Lemieux, 2017: The effects of plastic waves on the numerical convergence of the viscous–plastic and elastic–viscous–plastic sea-ice models. J. Comput. Phys., 340, 519533, https://doi.org/10.1016/j.jcp.2017.03.048.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225, https://doi.org/10.1175/JCLI3619.1.

    • Search Google Scholar
    • Export Citation
  • Yamagami, A., M. Matsueda, and H. L. Tanaka, 2017: Extreme Arctic cyclone in August 2016. Atmos. Sci. Lett., 18, 307314, https://doi.org/10.1002/asl.757.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, M. Steele, and A. Schweiger, 2008: What drove the dramatic retreat of Arctic sea ice during summer 2007? Geophys. Res. Lett., 35, L11505, https://doi.org/10.1029/2008GL034005.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 769 339 53
Full Text Views 373 123 8
PDF Downloads 374 154 12