The Leading Modes of Northern Eurasian Winter Snowfall Variability and the Potential Influencing Factors

Taotao Zhang aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing, China
bSchool of Atmospheric Sciences, NUIST, Nanjing, China

Search for other papers by Taotao Zhang in
Current site
Google Scholar
PubMed
Close
,
Siguang Zhu aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing, China
bSchool of Atmospheric Sciences, NUIST, Nanjing, China

Search for other papers by Siguang Zhu in
Current site
Google Scholar
PubMed
Close
,
Yaoming Song aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing, China
bSchool of Atmospheric Sciences, NUIST, Nanjing, China

Search for other papers by Yaoming Song in
Current site
Google Scholar
PubMed
Close
,
Xiaoyi Wang cState Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaoyi Wang in
Current site
Google Scholar
PubMed
Close
, and
Haishan Chen aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), International Joint Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology (NUIST), Nanjing, China
bSchool of Atmospheric Sciences, NUIST, Nanjing, China

Search for other papers by Haishan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the dominant modes of the interannual variability of the northern Eurasian winter snowfall during 1982–2020 and explores their potential influencing factors and the associated physical processes. The first and second empirical orthogonal function (EOF) modes feature coherent snowfall anomalies over the high latitudes of Eurasia and western Siberia, respectively. Further analyses indicate that the anomalous atmospheric circulations play a major role in forming the snowfall variability, which could be further attributed to the influences of the atmospheric teleconnection patterns and Arctic sea ice variations. Specifically, the anomalous circulations related to the first EOF mode are mainly contributed by the effects of the teleconnections of the Polar–Eurasian and Scandinavian patterns. The formation of the second EOF mode has a close connection with the North Atlantic Oscillation and the Eurasian pattern. In addition, the sea ice variations over Baffin Bay exert a considerable influence on the snowfall anomalies related to the second EOF mode by exciting a wave train–like anomalous circulation. This effect is further verified by a numerical simulation. An empirical statistical model based on the above influencing factors can well explain the temporal evolutions of the two dominant modes, verifying the important value of our results to improve the understanding of interannual variability of northern Eurasian winter snowfall.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Taotao Zhang, ttzhang@nuist.edu.cn

Abstract

This study investigates the dominant modes of the interannual variability of the northern Eurasian winter snowfall during 1982–2020 and explores their potential influencing factors and the associated physical processes. The first and second empirical orthogonal function (EOF) modes feature coherent snowfall anomalies over the high latitudes of Eurasia and western Siberia, respectively. Further analyses indicate that the anomalous atmospheric circulations play a major role in forming the snowfall variability, which could be further attributed to the influences of the atmospheric teleconnection patterns and Arctic sea ice variations. Specifically, the anomalous circulations related to the first EOF mode are mainly contributed by the effects of the teleconnections of the Polar–Eurasian and Scandinavian patterns. The formation of the second EOF mode has a close connection with the North Atlantic Oscillation and the Eurasian pattern. In addition, the sea ice variations over Baffin Bay exert a considerable influence on the snowfall anomalies related to the second EOF mode by exciting a wave train–like anomalous circulation. This effect is further verified by a numerical simulation. An empirical statistical model based on the above influencing factors can well explain the temporal evolutions of the two dominant modes, verifying the important value of our results to improve the understanding of interannual variability of northern Eurasian winter snowfall.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Taotao Zhang, ttzhang@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 1.6045 MB)
Save
  • Bailey, H., A. Hubbard, E. S. Klein, K.-R. Mustonen, P. D. Akers, H. Marttila, and J. M. Welker, 2021: Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci., 14, 283288, https://doi.org/10.1038/s41561-021-00719-y.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, and E. Roeckner, 1988: The effect of Eurasian snow cover on global climate. Science, 239, 504507, https://doi.org/10.1126/science.239.4839.504.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climatic impact. Quart. J. Roy. Meteor. Soc., 133, 21172131, https://doi.org/10.1002/qj.173.

    • Search Google Scholar
    • Export Citation
  • Callaghan, T. V., and Coauthors, 2011: Multiple effects of changes in Arctic snow cover. Ambio, 40, 3245, https://doi.org/10.1007/s13280-011-0213-x.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and R. Wu, 2017: Interdecadal changes in the relationship between interannual variations of spring North Atlantic SST and Eurasian surface air temperature. J. Climate, 30, 37713787, https://doi.org/10.1175/JCLI-D-16-0477.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, and Y. Liu, 2016: Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring. J. Climate, 29, 11091125, https://doi.org/10.1175/JCLI-D-15-0524.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S., R. Wu, L. Song, and W. Chen, 2019: Interannual variability of surface air temperature over mid-high latitudes of Eurasia during boreal autumn. Climate Dyn., 53, 18051821, https://doi.org/10.1007/s00382-019-04738-9.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Zhang, Q. Ma, S. Li, and M. Niu, 2023: Multi-timescale modulation of North Pacific Victoria mode on Central Asian vortices causing heavy snowfall. Climate Dyn., 60, 687704, https://doi.org/10.1007/s00382-022-06350-w.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Danco, J. F., A. M. DeAngelis, B. K. Raney, and A. J. Broccoli, 2016: Effects of a warming climate on daily snowfall events in the Northern Hemisphere. J. Climate, 29, 62956318, https://doi.org/10.1175/JCLI-D-15-0687.1.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, https://doi.org/10.1038/ngeo2738.

    • Search Google Scholar
    • Export Citation
  • Ding, S., B. Wu, and W. Chen, 2021: Dominant characteristics of early autumn Arctic sea ice variability and its impact on winter Eurasian climate. J. Climate, 34, 18251846, https://doi.org/10.1175/JCLI-D-19-0834.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., J. Zhang, S. Zhao, and Z. Chen, 2022: A mechanism of spring Barents Sea ice effect on the extreme summer droughts in northeastern China. Climate Dyn., 58, 10331048, https://doi.org/10.1007/s00382-021-05949-9.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., and C. L. E. Franzke, 2017: Atmospheric teleconnection patterns. Nonlinear and Stochastic Climate Dynamics, C. Franzke and T. O’Kane, Eds., Cambridge University Press, 54–104, https://doi.org/10.1017/9781316339251.004.

  • Gao, Y., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92114, https://doi.org/10.1007/s00376-014-0009-6.

    • Search Google Scholar
    • Export Citation
  • Gastineau, G., J. García-Serrano, and C. Frankignoul, 2017: The influence of autumnal Eurasian snow cover on climate and its link with Arctic sea ice cover. J. Climate, 30, 75997619, https://doi.org/10.1175/JCLI-D-16-0623.1.

    • Search Google Scholar
    • Export Citation
  • Han, S., and J. Sun, 2021: Connection between the November snow cover over northeast Asia and the following January precipitation in southern China. Int. J. Climatol., 41, 25532567, https://doi.org/10.1002/joc.6974.

    • Search Google Scholar
    • Export Citation
  • Han, T., M. Zhang, J. Zhu, B. Zhou, and S. Li, 2021: Impact of early spring sea ice in Barents Sea on midsummer rainfall distribution at Northeast China. Climate Dyn., 57, 10231037, https://doi.org/10.1007/s00382-021-05754-4.

    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., Y. Peings, J. C. Furtado, and P. J. Kushner, 2018: Snow–atmosphere coupling in the Northern Hemisphere. Nat. Climate Change, 8, 954963, https://doi.org/10.1038/s41558-018-0295-6.

    • Search Google Scholar
    • Export Citation
  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jia, X. J., M. Wang, Q. F. Qian, and R. Wu, 2021: Changes in the relationship between the variation in spring Eurasian snow and the surface temperature over the Northern Hemisphere around the late 1980s. J. Geophys. Res. Atmos., 126, e2020JD032982, https://doi.org/10.1029/2020JD032982.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., H.-N. Cheung, Y. Li, and S. Yang, 2023: Intra-seasonal variation of the wintertime polar/Eurasia pattern. Climate Dyn. 61, 813830, https://doi.org/10.1007/s00382-022-06612-7.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, M., C. Yoo, M. Sung, and S. Lee, 2021: Classification of wintertime atmospheric teleconnection patterns in the Northern Hemisphere. J. Climate, 34, 18471861, https://doi.org/10.1175/JCLI-D-20-0339.1.

    • Search Google Scholar
    • Export Citation
  • Kluver, D., 2017: Influence of regional Arctic sea ice extent on lagged snowfall in the contiguous United States. Int. J. Climatol., 37, 49624971, https://doi.org/10.1002/joc.5139.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111127, https://doi.org/10.1002/joc.3370100202.

    • Search Google Scholar
    • Export Citation
  • Li, F., Y. J. Orsolini, H. Wang, Y. Gao, and S. He, 2018: Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline. Geophys. Res. Lett., 45, 24972506, https://doi.org/10.1002/2017GL076210.

    • Search Google Scholar
    • Export Citation
  • Lin, W., and H. Chen, 2022a: Changes in the spatial–temporal characteristics of daily snowfall events over the Eurasian continent from 1980 to 2019. Int. J. Climatol., 42, 18411853, https://doi.org/10.1002/joc.7339.

    • Search Google Scholar
    • Export Citation
  • Lin, W., and H. Chen, 2022b: Daily snowfall events on the Eurasian continent: CMIP6 models evaluation and projection. Int. J. Climatol., 42, 68906907, https://doi.org/10.1002/joc.7618.

    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Search Google Scholar
    • Export Citation
  • Lute, A. C., and J. T. Abatzoglou, 2014: Role of extreme snowfall events in interannual variability of snowfall accumulation in the western United States. Water Resour. Res., 50, 28742888, https://doi.org/10.1002/2013WR014465.

    • Search Google Scholar
    • Export Citation
  • Niittynen, P., R. K. Heikkinen, and M. Luoto, 2018: Snow cover is a neglected driver of Arctic biodiversity loss. Nat. Climate Change, 8, 9971001, https://doi.org/10.1038/s41558-018-0311-x.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2014: Contrasting responses of mean and extreme snowfall to climate change. Nature, 512, 416418, https://doi.org/10.1038/nature13625.

    • Search Google Scholar
    • Export Citation
  • Rawlins, M. A., C. J. Willmott, A. Shiklomanov, E. Linder, S. Frolking, R. B. Lammers, and C. J. Vörösmarty, 2006: Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean. Geophys. Res. Lett., 33, L07403, https://doi.org/10.1029/2005GL025231.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37, L14703, https://doi.org/10.1029/2010GL043830.

    • Search Google Scholar
    • Export Citation
  • Smith, S. R., and J. J. O’Brien, 2001: Regional snowfall distributions associated with ENSO: Implications for seasonal forecasting. Bull. Amer. Meteor. Soc., 82, 11791192, https://doi.org/10.1175/1520-0477(2001)082<1179:RSDAWE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, Y., H. Chen, and J. Yang, 2022: The dominant modes of spring land surface temperature over Western Eurasia and their possible linkages with large-scale atmospheric teleconnection patterns. J. Geophys. Res. Atmos., 127, e2021JD035720, https://doi.org/10.1029/2021JD035720.

    • Search Google Scholar
    • Export Citation
  • Sturm, M., M. A. Goldstein, and C. Parr, 2017: Water and life from snow: A trillion dollar science question. Water Resour. Res., 53, 35343544, https://doi.org/10.1002/2017WR020840.

    • Search Google Scholar
    • Export Citation
  • Sun, B., H. Wang, B. Wu, M. Xu, B. Zhou, H. Li, and T. Wang, 2021: Dynamic control of the dominant modes of interannual variability of snowfall frequency in China. J. Climate, 34, 27772790, https://doi.org/10.1175/JCLI-D-20-0705.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., R. Zhang, W. Li, J. Zhu, and S. Yang, 2019: Possible impact of North Atlantic warming on the decadal change in the dominant modes of winter Eurasian snow water equivalent during 1979–2015. Climate Dyn., 53, 52035213, https://doi.org/10.1007/s00382-019-04853-7.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. Liu, J. Cohen, and S. Yu, 2022: Influence and prediction value of Arctic sea ice for spring Eurasian extreme heat events. Commun. Earth Environ., 3, 172, https://doi.org/10.1038/s43247-022-00503-9.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 1997: A formulation of a wave activity flux for stationary Rossby waves on a zonally varying basic flow. Geophys. Res. Lett., 24, 29852988, https://doi.org/10.1029/97GL03094.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, and R. Huang, 2008: Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett., 35, L20702, https://doi.org/10.1029/2008GL035287.

    • Search Google Scholar
    • Export Citation
  • Wang, L., K. Fan, and Z. Xu, 2020: Comparison of the causes of high-frequency heavy and light snowfall on interannual timescales over Northeast China. Atmosphere, 11, 936, https://doi.org/10.3390/atmos11090936.

    • Search Google Scholar
    • Export Citation
  • Wang, X., T. Wang, H. Guo, D. Liu, Y. Zhao, T. Zhang, Q. Liu, and S. Piao, 2018: Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Global Change Biol., 24, 16511662, https://doi.org/10.1111/gcb.13930.

    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418, https://doi.org/10.1175/JHM-D-11-0103.1.

    • Search Google Scholar
    • Export Citation
  • Ye, H., and J. Cohen, 2013: A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ. Res. Lett., 8, 014052, https://doi.org/10.1088/1748-9326/8/1/014052.

    • Search Google Scholar
    • Export Citation
  • Ye, K., G. Messori, D. Chen, and T. Woollings, 2022: An NAO-dominated mode of atmospheric circulation drives large decadal changes in wintertime surface climate and snow mass over Eurasia. Environ. Res. Lett., 17, 044025, https://doi.org/10.1088/1748-9326/ac592f.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., T. Wang, Y. Zhao, C. Xu, Y. Feng, and D. Liu, 2021: Drivers of Eurasian spring snow-cover variability. J. Climate, 34, 20372052, https://doi.org/10.1175/JCLI-D-20-0413.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., Y. Feng, and H. Chen, 2023: Revealing the formation of the dipole mode of Eurasian snow cover variability during late autumn. J. Geophys. Res. Atmos., 128, e2022JD038233, https://doi.org/10.1029/2022JD038233.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Coauthors, 2011: The great 2008 Chinese ice storm: Its socioeconomic-ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 4760, https://doi.org/10.1175/2010BAMS2857.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., Z. Wang, B. Sun, and X. Hao, 2021: Decadal change of heavy snowfall over northern China in the mid-1990s and associated background circulations. J. Climate, 34, 825837, https://doi.org/10.1175/JCLI-D-19-0815.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., Z. Zuo, and Q. He, 2021: Influence of Eurasian spring snowmelt on surface air temperature in late spring and early summer. J. Climate, 34, 81918204, https://doi.org/10.1175/JCLI-D-21-0111.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, L., A. R. Ives, C. Zhang, Y. Guo, and V. C. Radeloff, 2019: Climate change causes functionally colder winters for snow cover-dependent organisms. Nat. Climate Change, 9, 886893, https://doi.org/10.1038/s41558-019-0588-4.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 561 561 11
Full Text Views 216 216 4
PDF Downloads 339 339 3