Abstract
Summer precipitation over the Tibetan Plateau (TP) has experienced obvious changes in recent decades, with significantly increased trends observed over the northern and western regions during 1961–2020. Results indicate that there are two pathways linking them to the reduced Arctic sea ice from late spring (April and May) to early summer (June and July). First, decreased sea ice in late spring favors wet and dry soil over the eastern Caspian Sea and northeastern TP by stimulating anomalous wavelike patterns and modulating snow melting. Furthermore, the soil moisture anomalies during late spring could maintain to July because of memory effects, strengthen the midlatitude Silk Road pattern, and contribute to the formation of a dipole mode around TP, characterized by a west cyclone and an east anticyclone. Second, through exciting an anomalous Rossby wave directly spreading from the Arctic to TP, a similar dipole pattern on 500-hPa geopotential height could be associated with the decline of sea ice in early summer. Consequently, enhanced southwesterly winds shown with the west cyclone cause more water vapor input to the western TP, while easterly anomalies along with the east anticyclone inhibit climatological westerly winds and prevent water vapor from outputting. This dipole pattern finally brings more moisture accumulated in the western and northern TP and increases the precipitation. This study links heterogeneous changes in summer precipitation over TP to Arctic sea ice changes and provides insights for further investigation into whether the TP could serve as a bridge connecting the Arctic and tropical climates.
© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).