The Misrepresentation of the Southern African Easterly Jet in Models and Its Implications for Aerosol, Clouds, and Precipitation Distributions

Adeyemi A. Adebiyi aDepartment of Life and Environmental Sciences, University of California–Merced, Merced, California

Search for other papers by Adeyemi A. Adebiyi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7091-6872
,
Akintomide A. Akinsanola bDepartment of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, Illinois
cEnvironmental Science Division, Argonne National Laboratory, Lemont, Illinois

Search for other papers by Akintomide A. Akinsanola in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0192-0082
, and
Osinachi F. Ajoku dDepartment of Interdisciplinary Studies, Howard University, Washington D.C.
eDepartment of Earth, Environment and Equity, Howard University, Washington D.C.

Search for other papers by Osinachi F. Ajoku in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3973-471X
Restricted access

Abstract

The southern African easterly jet (AEJ-S) is an important midtropospheric feature critical to understanding the tropical convective system over central Africa and the aerosol–cloud interactions over the southeast Atlantic Ocean. However, it remains unclear how well models represent the AEJ-S and its influence on aerosol transport, clouds, and precipitation distribution. Here, we use ground- and satellite-based observations and reanalysis datasets to assess the representation of AEJ-S in the Coupled Model Intercomparison Project phase 6 (CMIP6) models between September and October during the peak of midtropospheric winds, aerosol transport, clouds, and precipitation. We find that most CMIP6 models have difficulty accurately simulating the strength, position, and spatial distribution of the AEJ-S. Specifically, the AEJ-S is relatively weaker and at a slightly lower altitude in the ensemble of CMIP6 models than represented by observation and reanalysis datasets. To assess the influence of the misrepresented the AEJ-S on CMIP6-simulated aerosol, clouds, and precipitation distributions, we performed composite analyses using models with low and high biases based on the estimates of their midtropospheric easterly wind speed. We find that the misrepresentation of the AEJ-S in CMIP6 models is associated with the overestimation of clouds and precipitation over central Africa, the underestimation of clouds over the southeast Atlantic Ocean, and the limitation of aerosol transport over the continent or the deviation of its spatial distribution from the typical zonal transport over the Atlantic Ocean. Because aerosols, clouds, and precipitation are important components of the regional climate system, we conclude that accurate representation of the AEJ-S is essential over central Africa and the southeast Atlantic Ocean.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adeyemi Adebiyi, aaadebiyi@ucmerced.edu

Abstract

The southern African easterly jet (AEJ-S) is an important midtropospheric feature critical to understanding the tropical convective system over central Africa and the aerosol–cloud interactions over the southeast Atlantic Ocean. However, it remains unclear how well models represent the AEJ-S and its influence on aerosol transport, clouds, and precipitation distribution. Here, we use ground- and satellite-based observations and reanalysis datasets to assess the representation of AEJ-S in the Coupled Model Intercomparison Project phase 6 (CMIP6) models between September and October during the peak of midtropospheric winds, aerosol transport, clouds, and precipitation. We find that most CMIP6 models have difficulty accurately simulating the strength, position, and spatial distribution of the AEJ-S. Specifically, the AEJ-S is relatively weaker and at a slightly lower altitude in the ensemble of CMIP6 models than represented by observation and reanalysis datasets. To assess the influence of the misrepresented the AEJ-S on CMIP6-simulated aerosol, clouds, and precipitation distributions, we performed composite analyses using models with low and high biases based on the estimates of their midtropospheric easterly wind speed. We find that the misrepresentation of the AEJ-S in CMIP6 models is associated with the overestimation of clouds and precipitation over central Africa, the underestimation of clouds over the southeast Atlantic Ocean, and the limitation of aerosol transport over the continent or the deviation of its spatial distribution from the typical zonal transport over the Atlantic Ocean. Because aerosols, clouds, and precipitation are important components of the regional climate system, we conclude that accurate representation of the AEJ-S is essential over central Africa and the southeast Atlantic Ocean.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Adeyemi Adebiyi, aaadebiyi@ucmerced.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.3494 MB)
Save
  • Adebiyi, A. A., and P. Zuidema, 2016: The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quart. J. Roy. Meteor. Soc., 142, 15741589, https://doi.org/10.1002/qj.2765.

    • Search Google Scholar
    • Export Citation
  • Adebiyi, A. A., and P. Zuidema, 2018: Low cloud cover sensitivity to biomass-burning aerosols and meteorology over the southeast Atlantic. J. Climate, 31, 43294346, https://doi.org/10.1175/JCLI-D-17-0406.1.

    • Search Google Scholar
    • Export Citation
  • Adebiyi, A. A., P. Zuidema, and S. J. Abel, 2015: The convolution of dynamics and moisture with the presence of shortwave absorbing aerosols over the southeast Atlantic. J. Climate, 28, 19972024, https://doi.org/10.1175/JCLI-D-14-00352.1.

    • Search Google Scholar
    • Export Citation
  • Adebiyi, A. A., P. Zuidema, I. Chang, S. P. P. Burton, and B. Cairns, 2020: Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds. Atmos. Chem. Phys., 20, 11 02511 043, https://doi.org/10.5194/acp-20-11025-2020.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ajoku, O., J. R. Norris, and A. J. Miller, 2020: Observed monsoon precipitation suppression caused by anomalous interhemispheric aerosol transport. Climate Dyn., 54, 10771091, https://doi.org/10.1007/s00382-019-05046-y.

    • Search Google Scholar
    • Export Citation
  • Aloysius, N. R., J. Sheffield, J. E. Saiers, H. Li, and E. F. Wood, 2016: Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. J. Geophys. Res. Atmos., 121, 130152, https://doi.org/10.1002/2015JD023656.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O. O., and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 1341, https://doi.org/10.1016/j.earscirev.2008.03.001.

    • Search Google Scholar
    • Export Citation
  • Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019a: E3SM-Project E3SM1.1ECA model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.11444.

  • Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019b: E3SM-Project E3SM1.1 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.11442.

  • Bader, D. C., R. Leung, M. Taylor, and R. B. McCoy, 2019c: E3SM-Project E3SM1.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.2294.

  • Balas, N., S. E. Nicholson, and D. Klotter, 2007: The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int. J. Climatol., 27, 13351349, https://doi.org/10.1002/joc.1456.

    • Search Google Scholar
    • Export Citation
  • Beighley, R. E., and Coauthors, 2011: Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River basin. Hydrol. Processes, 25, 32163229, https://doi.org/10.1002/hyp.8045.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.5195.

  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Search Google Scholar
    • Export Citation
  • Buchard, V., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies. J. Climate, 30, 68516872, https://doi.org/10.1175/JCLI-D-16-0613.1.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., L. Labbouz, C. Flamant, and A. Hodzic, 2022: Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA. Atmos. Chem. Phys., 22, 86398658, https://doi.org/10.5194/acp-22-8639-2022.

    • Search Google Scholar
    • Export Citation
  • Chang, I., and Coauthors, 2023: On the differences in the vertical distribution of modeled aerosol optical depth over the southeastern Atlantic. Atmos. Chem. Phys., 23, 42834309, https://doi.org/10.5194/acp-23-4283-2023.

    • Search Google Scholar
    • Export Citation
  • Colarco, P., A. Silva, M. Chin, and T. Diehl, 2010: Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth. J. Geophys. Res., 115, D14207, https://doi.org/10.1029/2009JD012820.

    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585607, https://doi.org/10.5194/gmd-10-585-2017.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2016: Using qflux to constrain modeled Congo basin rainfall in the CMIP5 ensemble. J. Geophys. Res. Atmos., 121, 13 41513 442, https://doi.org/10.1002/2016JD025596.

    • Search Google Scholar
    • Export Citation
  • Creese, A., and R. Washington, 2018: A process-based assessment of CMIP5 rainfall in the Congo basin: The September–November rainy season. J. Climate, 31, 74177439, https://doi.org/10.1175/JCLI-D-17-0818.1.

    • Search Google Scholar
    • Export Citation
  • Creese, A., R. Washington, and C. Munday, 2019: The plausibility of September–November Congo basin rainfall change in coupled climate models. J. Geophys. Res. Atmos., 124, 58225846, https://doi.org/10.1029/2018JD029847.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., D. Lawrence, K. Lindsay, W. H. Lipscomb, and W. G. Strand, 2019: NCAR CESM2 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.7627.

  • Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.

    • Search Google Scholar
    • Export Citation
  • Driver, P., and C. J. C. Reason, 2017: Variability in the Botswana high and its relationships with rainfall and temperature characteristics over southern Africa. Int. J. Climatol., 37, 570581, https://doi.org/10.1002/joc.5022.

    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Farnsworth, A., E. White, C. J. R. Williams, E. Black, and D. R. Kniveton, 2011: Understanding the large scale driving mechanisms of rainfall variability over Central Africa. African Climate and Climate Change, Advances in Global Change Research, Vol. 43, Springer, 101–122.

  • Garstang, M., P. D. Tyson, R. J. Swap, M. Edwards, P. Kallberg, and J. Lindesay, 1996: Horizontal and vertical transport of air over southern Africa. J. Geophys. Res., 101, 23 72123 736, https://doi.org/10.1029/95JD00844.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean,Time-averaged,Single-Level,Assimilation,Aerosol Diagnostics V5.12.4. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed 24 August 2018, https://doi.org/10.5067/FH9A0MLJPC7N.

  • Hoesly, R. M., and Coauthors, 2018: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev., 11, 369408, https://doi.org/10.5194/gmd-11-369-2018.

    • Search Google Scholar
    • Export Citation
  • Howard, E., and R. Washington, 2018: Characterizing the synoptic expression of the Angola low. J. Climate, 31, 71477165, https://doi.org/10.1175/JCLI-D-18-0017.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, https://doi.org/10.1175/MWR2916.1.

    • Search Google Scholar
    • Export Citation
  • Hua, W., L. Zhou, S. E. Nicholson, H. Chen, and M. Qin, 2019: Assessing reanalysis data for understanding rainfall climatology and variability over Central Equatorial Africa. Climate Dyn., 53, 651669, https://doi.org/10.1007/s00382-018-04604-0.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1998: A User’s Guide for SCRIP: A Spherical Coordinate Remapping and Interpolation Package. Los Alamos National Laboratory, https://github.com/SCRIP-Project/SCRIP.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., and Coauthors, 2018: NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.8597.

  • Kuete, G., W. Pokam Mba, and R. Washington, 2020: African Easterly Jet South: Control, maintenance mechanisms and link with southern subtropical waves. Climate Dyn., 54, 15391552, https://doi.org/10.1007/s00382-019-05072-w.

    • Search Google Scholar
    • Export Citation
  • Kuete, G., W. Pokam Mba, R. James, E. Dyer, T. Annor, and R. Washington, 2023: How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy season? Climate Dyn., 60, 29072929, https://doi.org/10.1007/s00382-022-06467-y.

    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. J. Parker, J. P. Lafore, B. Sultan, and J. Pelon, 2009: Seasonal evolution of the West African heat low: A climatological perspective. Climate Dyn., 33, 313330, https://doi.org/10.1007/s00382-009-0553-4.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-L., and H.-C. Liang, 2019: AS-RCEC TaiESM1.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.9684.

  • Levy, R. C., S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu, 2013: The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech., 6, 29893034, https://doi.org/10.5194/amt-6-2989-2013.

    • Search Google Scholar
    • Export Citation
  • Mallet, M., and Coauthors, 2019: Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments. Atmos. Chem. Phys., 19, 49634990, https://doi.org/10.5194/acp-19-4963-2019.

    • Search Google Scholar
    • Export Citation
  • Mallet, M., P. Nabat, B. Johnson, M. Michou, J. M. Haywood, C. Chen, and O. Dubovik, 2021: Climate models generally underrepresent the warming by Central Africa biomass-burning aerosols over the Southeast Atlantic. Sci. Adv., 7, eabg9998, https://doi.org/10.1126/sciadv.abg9998.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Munday, C., and R. Washington, 2017: Circulation controls on southern African precipitation in coupled models: The role of the Angola Low. J. Geophys. Res. Atmos., 122, 861877, https://doi.org/10.1002/2016JD025736.

    • Search Google Scholar
    • Export Citation
  • Munday, C., and R. Washington, 2018: Systematic climate model rainfall biases over southern Africa: Links to moisture circulation and topography. J. Climate, 31, 75337548, https://doi.org/10.1175/JCLI-D-18-0008.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and J. P. Grist, 2003: The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J. Climate, 16, 10131030, https://doi.org/10.1175/1520-0442(2003)016<1013:TSEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., J. Kim, and J. Hoopingarner, 1988: Atlas of African Rainfall and Its Interannual Variability. Department of Meteorology, Florida State University, 237 pp.

  • Ogwang, B. A., H. Chen, X. Li, and C. Gao, 2014: The influence of topography on East African October to December climate: Sensitivity experiments with RegCM4. Adv. Meteor., 2014, 143917, https://doi.org/10.1155/2014/143917.

    • Search Google Scholar
    • Export Citation
  • Parker, W. S., 2016: Reanalyses and observations: What’s the difference? Bull. Amer. Meteor. Soc., 97, 15651572, https://doi.org/10.1175/BAMS-D-14-00226.1.

    • Search Google Scholar
    • Export Citation
  • Pistone, K., and Coauthors, 2021: Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean. Atmos. Chem. Phys., 21, 96439668, https://doi.org/10.5194/acp-21-9643-2021.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., P. A. Hubanks, K. Meyer, and M. D. King, 2015: MODIS Atmosphere L3 Monthly Product (08_L3). MOD08_M3 MODIS/Terra Aerosol Cloud Water Vapor Ozone Monthly L3 Global 1Deg CMG, NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed 10 September 2019, https://doi.org/10.5067/MODIS/MYD08_M3.006.

  • Randles, C. A., and Coauthors, 2016: The MERRA-2 aerosol assimilation. NASA Tech. Rep. Series 45, 156 pp., https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3nfIo84AAAAJ&citation_for_view=3nfIo84AAAAJ:_Qo2XoVZTnwC.

  • Randles, C. A., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Climate, 30, 68236850, https://doi.org/10.1175/JCLI-D-16-0609.1.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., and Q. Liu, 2014: Observation-corrected precipitation estimates in GEOS-5. Accessed 30 June 2023, https://ntrs.nasa.gov/citations/20150000725.

  • Remer, L., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947973, https://doi.org/10.1175/JAS3385.1.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series 27, 118 pp., https://ntrs.nasa.gov/citations/20120011955.

  • Ryoo, J.-M., L. Pfister, R. Ueyama, P. Zuidema, R. Wood, I. Chang, and J. Redemann, 2021: A meteorological overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign over the southeastern Atlantic during 2016–2018: Part 1—Climatology. Atmos. Chem. Phys., 21, 16 68916 707, https://doi.org/10.5194/acp-21-16689-2021.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, https://doi.org/10.1029/2010JD015540.

    • Search Google Scholar
    • Export Citation
  • Solmon, F., N. Elguindi, M. Mallet, C. Flamant, and P. Formenti, 2021: West African monsoon precipitation impacted by the South Eastern Atlantic biomass burning aerosol outflow. npj Climate Atmos. Sci., 4, 54, https://doi.org/10.1038/s41612-021-00210-w.

    • Search Google Scholar
    • Export Citation
  • Stier, P., and Coauthors, 2013: Host model uncertainties in aerosol radiative forcing estimates: Results from the AeroCom Prescribed intercomparison study. Atmos. Chem. Phys., 13, 32453270, https://doi.org/10.5194/acp-13-3245-2013.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and Coauthors, 2019: The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev., 12, 48234873, https://doi.org/10.5194/gmd-12-4823-2019.

    • Search Google Scholar
    • Export Citation
  • Tamoffo, A. T., and Coauthors, 2019: Process-oriented assessment of RCA4 regional climate model projections over the Congo basin under 1.5°C and 2°C global warming levels: Influence of regional moisture fluxes. Climate Dyn., 53, 19111935, https://doi.org/10.1007/s00382-019-04751-y.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and A. A. Adebiyi, 2012: Using CloudSat cloud retrievals to differentiate satellite-derived rainfall products over West Africa. J. Hydrometeor., 13, 18101816, https://doi.org/10.1175/JHM-D-12-039.1.

    • Search Google Scholar
    • Export Citation
  • Toracinta, E. R., and E. J. Zipser, 2001: Lightning and SSM/I-ice-scattering mesoscale convective systems in the global tropics. J. Appl. Meteor., 40, 9831002, https://doi.org/10.1175/1520-0450(2001)040<0983:LASIIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tosca, M. G., D. J. Diner, M. J. Garay, and O. V. Kalashnikova, 2015: Human-caused fires limit convection in tropical Africa: First temporal observations and attribution. Geophys. Res. Lett., 42, 64926501, https://doi.org/10.1002/2015GL065063.

    • Search Google Scholar
    • Export Citation
  • van Marle, M. J. E., and Coauthors, 2017: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev., 10, 33293357, https://doi.org/10.5194/gmd-10-3329-2017.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., and C. D. Thorncroft, 2013: The role of convectively coupled atmospheric Kelvin waves on African easterly wave activity. Mon. Wea. Rev., 141, 19101924, https://doi.org/10.1175/MWR-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Washington, R., R. James, H. Pearce, W. M. Pokam, and W. Moufouma-Okia, 2013: Congo basin rainfall climatology: Can we believe the climate models? Philos. Trans. Roy. Soc., B368, 20120296, https://doi.org/10.1098/rstb.2012.0296.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wu, T., and Coauthors, 2020: Beijing Climate Center Earth System Model version 1 (BCC-ESM1): Model description and evaluation of aerosol simulations. Geosci. Model Dev., 13, 9771005, https://doi.org/10.5194/gmd-13-977-2020.

    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., A. Yatagai, M. Y. Chen, T. Hayasaka, Y. Fukushima, Ch. M. Liu, and S. Yang, 2007: A gauge based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607626, https://doi.org/10.1175/JHM583.1.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019a: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931965, https://doi.org/10.2151/jmsj.2019-051.

    • Search Google Scholar
    • Export Citation
  • Yukimoto, S., and Coauthors, 2019b: MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.621.

  • Zhang, J., and Coauthors, 2018: BCC BCC-ESM1 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.2949.

  • Zhang, Z., K. Meyer, H. Yu, S. Platnick, P. Colarco, Z. Liu, and L. Oreopoulos, 2016: Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations. Atmos. Chem. Phys., 16, 28772900, https://doi.org/10.5194/acp-16-2877-2016.

    • Search Google Scholar
    • Export Citation
  • Ziehn, T., and Coauthors, 2019: CSIRO ACCESS-ESM1.5 model output prepared for CMIP6 CMIP. Earth System Grid Federation, accessed 1 February 2023, https://doi.org/10.22033/ESGF/CMIP6.2288.

  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., J. Redemann, J. Haywood, R. Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe absorbing aerosol’s impact on climate. Bull. Amer. Meteor. Soc., 97, 11311135, https://doi.org/10.1175/BAMS-D-15-00082.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 843 537 43
Full Text Views 283 148 5
PDF Downloads 357 198 3