Different Propagation Mechanisms of Deep and Shallow Wintertime Extratropical Cyclones over the North Pacific

Yuling Yao aChina Meteorological Administration-Nanjing University Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yuling Yao in
Current site
Google Scholar
PubMed
Close
,
Yang Zhang aChina Meteorological Administration-Nanjing University Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yang Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4102-2671
,
Kevin I. Hodges bDepartment of Meteorology, University of Reading, Reading, United Kingdom
cNational Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by Kevin I. Hodges in
Current site
Google Scholar
PubMed
Close
, and
Talia Tamarin-Brodsky dDepartment of Geophysics, Tel Aviv University, Tel Aviv, Israel

Search for other papers by Talia Tamarin-Brodsky in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclones (ETCs) are three-dimensional synoptic systems in the middle and high latitudes. Previous studies on ETC propagation have typically focused on cyclones identified at a single level. However, more recent studies have found that ETCs have diverse vertical structures and cyclones with different vertical extents always exhibit distinct characteristics and surface impacts. In this work, we study the movement of wintertime (December–February) extratropical cyclones by classifying North Pacific ETCs into deep cyclones, shallow low-level cyclones, and shallow upper-level cyclones, based on reanalysis data from 1979 to 2019. Applying a Lagrangian perspective, we track the cyclones at different vertical levels to investigate the different characteristics and mechanisms for the propagation of deep and shallow ETCs. A potential vorticity (PV) tendency analysis of cyclone-tracking composites reveals that, for deep cyclones, the diabatic heating at 850 hPa and the horizontal advection by the stationary flow at 500 hPa are the main contributors to the poleward movement. For shallow cyclones, the nonlinear advection terms play a dominant role in their meridional motion, advecting shallow low-level cyclones poleward but shallow upper-level cyclones equatorward. A piecewise PV inversion analysis suggests that the nonlinear advection by winds induced from upper-level PV anomalies is responsible for the different performance of nonlinear advection terms for shallow low-level and upper-level cyclones. These findings further our understanding of the mechanisms and variations of cyclone propagation.

Significance Statement

Extratropical cyclones (ETCs) can be identified at different levels in the troposphere. These mobile low pressure cyclonic storms are the main sources of synoptic variability in the extratropics and often bring severe or even disastrous weather. Previous studies on ETC movement have typically been restricted to cyclones identified at a single level. Our study, by identifying ETCs at multiple levels, classifies cyclones into deep, shallow low-level, and shallow upper-level cyclones. For deep cyclones, their poleward movement is found to be a result of diabatic heating at lower levels and dominated by the stationary circulation at upper levels. For shallow cyclones, nonlinear advection determines whether they propagate poleward or equatorward. These findings further our understanding of the mechanisms of cyclone propagation and imply that the movement of deep and shallow cyclones may undergo different changes with different weather and climate impacts in the future, given the enhanced diabatic heating under global warming, which deserves further investigation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhang, yangzhang@nju.edu.cn

Abstract

Extratropical cyclones (ETCs) are three-dimensional synoptic systems in the middle and high latitudes. Previous studies on ETC propagation have typically focused on cyclones identified at a single level. However, more recent studies have found that ETCs have diverse vertical structures and cyclones with different vertical extents always exhibit distinct characteristics and surface impacts. In this work, we study the movement of wintertime (December–February) extratropical cyclones by classifying North Pacific ETCs into deep cyclones, shallow low-level cyclones, and shallow upper-level cyclones, based on reanalysis data from 1979 to 2019. Applying a Lagrangian perspective, we track the cyclones at different vertical levels to investigate the different characteristics and mechanisms for the propagation of deep and shallow ETCs. A potential vorticity (PV) tendency analysis of cyclone-tracking composites reveals that, for deep cyclones, the diabatic heating at 850 hPa and the horizontal advection by the stationary flow at 500 hPa are the main contributors to the poleward movement. For shallow cyclones, the nonlinear advection terms play a dominant role in their meridional motion, advecting shallow low-level cyclones poleward but shallow upper-level cyclones equatorward. A piecewise PV inversion analysis suggests that the nonlinear advection by winds induced from upper-level PV anomalies is responsible for the different performance of nonlinear advection terms for shallow low-level and upper-level cyclones. These findings further our understanding of the mechanisms and variations of cyclone propagation.

Significance Statement

Extratropical cyclones (ETCs) can be identified at different levels in the troposphere. These mobile low pressure cyclonic storms are the main sources of synoptic variability in the extratropics and often bring severe or even disastrous weather. Previous studies on ETC movement have typically been restricted to cyclones identified at a single level. Our study, by identifying ETCs at multiple levels, classifies cyclones into deep, shallow low-level, and shallow upper-level cyclones. For deep cyclones, their poleward movement is found to be a result of diabatic heating at lower levels and dominated by the stationary circulation at upper levels. For shallow cyclones, nonlinear advection determines whether they propagate poleward or equatorward. These findings further our understanding of the mechanisms of cyclone propagation and imply that the movement of deep and shallow cyclones may undergo different changes with different weather and climate impacts in the future, given the enhanced diabatic heating under global warming, which deserves further investigation.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yang Zhang, yangzhang@nju.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 12.994 MB)
Save
  • Ahmadi-Givi, F., G. C. Graig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., A. M. Awad, M. N. Islam, and A. K. Al-Khalaf, 2015: A climatological study: Wet season cyclone tracks in the east Mediterranean region. Theor. Appl. Climatol., 120, 351365, https://doi.org/10.1007/s00704-014-1178-z.

    • Search Google Scholar
    • Export Citation
  • Attinger, R., E. Spreitzer, M. Boettcher, H. Wernli, and H. Joos, 2021: Systematic assessment of the diabatic processes that modify low-level potential vorticity in extratropical cyclones. Wea. Climate Dyn., 2, 10731091, https://doi.org/10.5194/wcd-2-1073-2021.

    • Search Google Scholar
    • Export Citation
  • Barnes, M. A., T. Ndarana, and W. A. Landman, 2021: Cut-off lows in the Southern Hemisphere and their extension to the surface. Climate Dyn., 56, 37093732, https://doi.org/10.1007/s00382-021-05662-7.

    • Search Google Scholar
    • Export Citation
  • Basu, S., X. Zhang, and Z. Wang, 2018: Eurasian winter storm activity at the end of the century: A CMIP5 multi-model ensemble projection. Earth’s Future, 6, 6170, https://doi.org/10.1002/2017EF000670.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

    • Search Google Scholar
    • Export Citation
  • Blender, R., K. Fraedrich, and F. Lunkeit, 1997: Identification of cyclone-track regimes in the North Atlantic. Quart. J. Roy. Meteor. Soc., 123, 727741, https://doi.org/10.1002/qj.49712353910.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Büeler, D., and S. Pfahl, 2017: Potential vorticity diagnostics to quantify effects of latent heating in extratropical cyclones. Part I: Methodology. J. Atmos. Sci., 74, 35673590, https://doi.org/10.1175/JAS-D-17-0041.1.

    • Search Google Scholar
    • Export Citation
  • Čampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the Northern Hemisphere. J. Atmos. Sci., 69, 725740, https://doi.org/10.1175/JAS-D-11-050.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., L. C. Shaffrey, and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, https://doi.org/10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Charney, J., 1955: The use of the primitive equations of motion in numerical prediction. Tellus, 7A, 2226, https://doi.org/10.1111/j.2153-3490.1955.tb01138.x.

    • Search Google Scholar
    • Export Citation
  • Chen, L., B. Tan, N. G. Kvamstø, and O. M. Johannessen, 2014: Wintertime cyclone/anticyclone activity over China and its relation to upper tropospheric jets. Tellus, 66A, 21889, https://doi.org/10.3402/tellusa.v66.21889.

    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, https://doi.org/10.1175/JAS-D-14-0337.1.

    • Search Google Scholar
    • Export Citation
  • Côté, H., K. M. Grise, S.-W. Son, R. de Elía, and A. Frigon, 2015: Challenges of tracking extratropical cyclones in regional climate models. Climate Dyn., 44, 31013109, https://doi.org/10.1007/s00382-014-2327-x.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 2009: On formulas for equivalent potential temperature. Mon. Wea. Rev., 137, 31373148, https://doi.org/10.1175/2009MWR2774.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: A potential-vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis. Mon. Wea. Rev., 120, 24092428, https://doi.org/10.1175/1520-0493(1992)120<2409:APVDOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40359, https://doi.org/10.1038/srep40359.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flaounas, E., S. Raveh-Rubin, H. Wernli, P. Drobinski, and S. Bastin, 2015: The dynamical structure of intense Mediterranean cyclones. Climate Dyn., 44, 24112427, https://doi.org/10.1007/s00382-014-2330-2.

    • Search Google Scholar
    • Export Citation
  • Gómara, I., B. Rodríguez-Fonseca, P. Zurita-Gotor, and J. G. Pinto, 2014: On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation. Geophys. Res. Lett., 41, 21822190, https://doi.org/10.1002/2014GL059647.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932, https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., R. W. Lee, and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, https://doi.org/10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59, 10411061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, J., Y. Zhang, X.-Q. Yang, X. Ren, and H. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 18971914, https://doi.org/10.1175/JCLI-D-19-0308.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, L.-Z., S.-M. Fu, J.-H. Sun, R. Fu, W.-L. Li, S.-X. Zhao, and H. Wang, 2022: Surface wind and vertical extent features of the explosive cyclones in the Northern Hemisphere based on the ERA-I reanalysis data. Int. J. Climatol., 42, 9931014, https://doi.org/10.1002/joc.7284.

    • Search Google Scholar
    • Export Citation
  • Kang, J. M., and S.-W. Son, 2021: Development processes of the explosive cyclones over the northwest Pacific: Potential vorticity tendency inversion. J. Atmos. Sci., 78, 19131930, https://doi.org/10.1175/JAS-D-20-0151.1.

    • Search Google Scholar
    • Export Citation
  • Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, https://doi.org/10.1029/2019JD031632.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y.-O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Climate, 23, 56445667, https://doi.org/10.1175/2010JCLI3346.1.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-S., J.-H. Kim, C.-H. Ho, and P.-S. Chu, 2011: Pattern classification of typhoon tracks using the fuzzy c-means clustering method. J. Climate, 24, 488508, https://doi.org/10.1175/2010JCLI3751.1.

    • Search Google Scholar
    • Export Citation
  • Kunz, T., K. Fraedrich, and F. Lunkeit, 2009: Synoptic scale wave breaking and its potential to drive NAO-like circulation dipoles: A simplified GCM approach. Quart. J. Roy. Meteor. Soc., 135 (638), 119, https://doi.org/10.1002/qj.351.

    • Search Google Scholar
    • Export Citation
  • Kuwano-Yoshida, A., S. Okajima, and H. Nakamura, 2022: Rapid increase of explosive cyclone activity over the midwinter North Pacific in the late 1980s. J. Climate, 35, 11131133, https://doi.org/10.1175/JCLI-D-21-0287.1.

    • Search Google Scholar
    • Export Citation
  • Lakkis, S. G., P. Canziani, A. Yuchechen, L. Rocamora, A. Caferri, K. Hodges, and A. O’Neill, 2019: A 4D feature‐tracking algorithm: A multidimensional view of cyclone systems. Quart. J. Roy. Meteor. Soc., 145, 395417, https://doi.org/10.1002/qj.3436.

    • Search Google Scholar
    • Export Citation
  • Lakkis, S. G., P. Canziani, J. O. Rodriguez, A. E. Yuchechen, A. O’Neill, K. H. Albers, and K. Hodges, 2021: Early 21st century cyclone climatology: A 3D perspective. Basic characterization. Int. J. Climatol., 41, 40194046, https://doi.org/10.1002/joc.7056.

    • Search Google Scholar
    • Export Citation
  • Leckebusch, G. C., and U. Ulbrich, 2004: On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global Planet. Change, 44, 181193, https://doi.org/10.1016/j.gloplacha.2004.06.011.

    • Search Google Scholar
    • Export Citation
  • Lim, E. P., and I. Simmonds, 2007: Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001. J. Climate, 20, 26752690, https://doi.org/10.1175/JCLI4135.1.

    • Search Google Scholar
    • Export Citation
  • Lin, D., W. Huang, Z. Yang, X. He, T. Qiu, B. Wang, and J. S. Wright, 2019: Impacts of wintertime extratropical cyclones on temperature and precipitation over northeastern China during 1979–2016. J. Geophys. Res. Atmos., 124, 15141536, https://doi.org/10.1029/2018JD029174.

    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio Front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Search Google Scholar
    • Export Citation
  • Mendes, D., and M. D. Mendes, 2004: Climatology of cyclones, anticyclones and storm tracks: Revision of concepts. Rev. Bras. Geofís., 22, 127134, https://doi.org/10.1590/S0102-261X2004000200003.

    • Search Google Scholar
    • Export Citation
  • Mesquita, M. S., D. E. Atkinson, and K. I. Hodges, 2010: Characteristics and variability of storm tracks in the North Pacific, Bering Sea, and Alaska. J. Climate, 23, 294311, https://doi.org/10.1175/2009JCLI3019.1.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and Coauthors, 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, https://doi.org/10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, G. Chen, and X.-Q. Yang, 2016: Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci., 73, 429448, https://doi.org/10.1175/JAS-D-15-0090.1.

    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, G. Chen, and X.-Q. Yang, 2022: Quantifying eddy generation and dissipation in the jet response to upper- versus lower-level thermal forcing. J. Atmos. Sci., 79, 27032720, https://doi.org/10.1175/JAS-D-21-0307.1.

    • Search Google Scholar
    • Export Citation
  • Okajima, S., H. Nakamura, and Y. Kaspi, 2021: Cyclonic and anticyclonic contributions to atmospheric energetics. Sci. Rep., 11, 13202, https://doi.org/10.1038/s41598-021-92548-7.

    • Search Google Scholar
    • Export Citation
  • Pepler, A., and A. Dowdy, 2020: A three-dimensional perspective on extratropical cyclone impacts. J. Climate, 33, 56355649, https://doi.org/10.1175/JCLI-D-19-0445.1.

    • Search Google Scholar
    • Export Citation
  • Pepler, A., and A. Dowdy, 2021: Fewer deep cyclones projected for the midlatitudes in a warming climate, but with more intense rainfall. Environ. Res. Lett., 16, 054044, https://doi.org/10.1088/1748-9326/abf528.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., and T. Ambrizzi, 2003: Variability of Southern Hemisphere cyclone and anticyclone behavior: Further analysis. J. Climate, 16, 10751083, https://doi.org/10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., T. Durrant, I. Simmonds, and I. Smith, 2008: Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and Southern Australia rainfall. J. Climate, 21, 55665584, https://doi.org/10.1175/2008JCLI2128.1.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Search Google Scholar
    • Export Citation
  • Pinheiro, H., M. Gan, and K. Hodges, 2021: Structure and evolution of intense austral cut-off lows. Quart. J. Roy. Meteor. Soc., 147 (734), 120, https://doi.org/10.1002/qj.3900.

    • Search Google Scholar
    • Export Citation
  • Pook, M. J., J. S. Risbey, and P. C. McIntosh, 2014: A comparative synoptic climatology of cool-season rainfall in major grain-growing regions of Southern Australia. Theor. Appl. Climatol., 117, 521533, https://doi.org/10.1007/s00704-013-1021-y.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., and J. Catto, 2022: Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure. Wea. Climate Dyn., 3, 337360, https://doi.org/10.5194/wcd-3-337-2022.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., D. Ackerley, J. L. Catto, K. I. Hodges, R. E. McDonald, and R. W. Lee, 2020: An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Climate, 33, 63156343, https://doi.org/10.1175/JCLI-D-19-0928.1.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., 2007: On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40. Geophys. Res. Lett., 34, L07703, https://doi.org/10.1029/2006GL029084.

    • Search Google Scholar
    • Export Citation
  • Raible, C. C., P. M. Della-Marta, C. Schwierz, H. Wernli, and R. Blender, 2008: Northern Hemisphere extratropical cyclones: Comparison of detection and tracking methods and different reanalyses. Mon. Wea. Rev., 136, 880897, https://doi.org/10.1175/2007MWR2143.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and H. Binder, 2021: The storm-track suppression over the western North Pacific from a cyclone life-cycle perspective. Wea. Climate Dyn., 2, 5569, https://doi.org/10.5194/wcd-2-55-2021.

    • Search Google Scholar
    • Export Citation
  • Seiler, C., 2019: A climatological assessment of intense extratropical cyclones from the potential vorticity perspective. J. Climate, 32, 23692380, https://doi.org/10.1175/JCLI-D-18-0461.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33 (1), 123, https://doi.org/10.1080/07055900.1995.9649522.

    • Search Google Scholar
    • Export Citation
  • Sickmöller, M., R. Blender, and K. Fraedrich, 2000: Observed winter cyclone tracks in the Northern Hemisphere in re-analysed ECMWF data. Quart. J. Roy. Meteor. Soc., 126, 591620, https://doi.org/10.1002/qj.49712656311.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1995: A climatology of cyclogenesis for the Southern Hemisphere. Mon. Wea. Rev., 123, 16011619, https://doi.org/10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., 1997: Objective identification of cyclones and their circulation intensity, and climatology. Wea. Forecasting, 12, 595612, https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017a: Enhanced poleward propagation of storms under climate change. Nat. Geosci., 10, 908913, https://doi.org/10.1038/s41561-017-0001-8.

    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017b: Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci., 74, 553572, https://doi.org/10.1175/JAS-D-16-0122.1.

    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., and Y. Kaspi, 2017c: The poleward shift of storm tracks under global warming: A Lagrangian perspective. Geophys. Res. Lett., 44, 10 66610 674, https://doi.org/10.1002/2017GL073633.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, https://doi.org/10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, and P. Berrisford, 2008: A new Rossby wave–breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65, 609626, https://doi.org/10.1175/2007JAS2347.1.

    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X. D., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Ding, and Q. Li, 2012: A climatology of extratropical cyclones over East Asia during 1958–2001. Acta Meteor. Sin., 26, 261277, https://doi.org/10.1007/s13351-012-0301-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1899 1899 16
Full Text Views 297 297 4
PDF Downloads 349 349 6