Exploring the Asymmetries of Pan-Tropical Connections from the Tropical Indian to the Pacific Basin

Rajashree Naha aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
bThe ARC (Australian Research Council) Centre of Excellence for Climate Extremes, Monash University, Victoria, Australia

Search for other papers by Rajashree Naha in
Current site
Google Scholar
PubMed
Close
,
Shayne McGregor aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
bThe ARC (Australian Research Council) Centre of Excellence for Climate Extremes, Monash University, Victoria, Australia

Search for other papers by Shayne McGregor in
Current site
Google Scholar
PubMed
Close
, and
Martin Singh aSchool of Earth Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia
bThe ARC (Australian Research Council) Centre of Excellence for Climate Extremes, Monash University, Victoria, Australia

Search for other papers by Martin Singh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent analysis of pan-tropical interactions suggests that post-1980 the tropical Indian Ocean’s (TIO) influence on the tropical Pacific Ocean (TPO) appears to have subdued, while the tropical Atlantic Ocean’s (TAO) influence has become more pronounced. The present study explores whether we can identify and dynamically explain any asymmetries in the pan-tropical connection between the TIO and TPO SSTs in an attempt to explain the recently reported weakening of the TIO influence. To this end, we carry out two idealized atmosphere-only experiments using the ACCESS atmospheric general circulation model where the sign of the decadal TIO SST signal is varied—presenting warm and cool TIO scenarios. We find a relatively strong asymmetric response of TPO precipitation to TIO SST anomalies, where average TPO precipitation shows a strong increase in response to TIO cooling, but a weaker decrease in response to TIO warming. The asymmetry is hypothesized to result from differences in the depth of latent heating over the TIO, which ultimately affects the depth of the remote response over the TPO. Asymmetries also occur in the spatial pattern of the changes in precipitation and surface winds. In the fully coupled system, these asymmetries would be expected to also alter the background state on which ENSO develops, providing a further mechanism by which the TIO influence may vary depending on its phase.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rajashree Naha, rajashree.naha@monash.edu

Abstract

Recent analysis of pan-tropical interactions suggests that post-1980 the tropical Indian Ocean’s (TIO) influence on the tropical Pacific Ocean (TPO) appears to have subdued, while the tropical Atlantic Ocean’s (TAO) influence has become more pronounced. The present study explores whether we can identify and dynamically explain any asymmetries in the pan-tropical connection between the TIO and TPO SSTs in an attempt to explain the recently reported weakening of the TIO influence. To this end, we carry out two idealized atmosphere-only experiments using the ACCESS atmospheric general circulation model where the sign of the decadal TIO SST signal is varied—presenting warm and cool TIO scenarios. We find a relatively strong asymmetric response of TPO precipitation to TIO SST anomalies, where average TPO precipitation shows a strong increase in response to TIO cooling, but a weaker decrease in response to TIO warming. The asymmetry is hypothesized to result from differences in the depth of latent heating over the TIO, which ultimately affects the depth of the remote response over the TPO. Asymmetries also occur in the spatial pattern of the changes in precipitation and surface winds. In the fully coupled system, these asymmetries would be expected to also alter the background state on which ENSO develops, providing a further mechanism by which the TIO influence may vary depending on its phase.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rajashree Naha, rajashree.naha@monash.edu
Save
  • Abellán, E., S. McGregor, M. H. England, and A. Santoso, 2018: Distinctive role of ocean advection anomalies in the development of the extreme 2015–16 El Niño. Climate Dyn., 51, 21912208, https://doi.org/10.1007/s00382-017-4007-0.

    • Search Google Scholar
    • Export Citation
  • Ault, T. R., C. Deser, M. Newman, and J. Emile-Geay, 2013: Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophys. Res. Lett., 40, 34503456, https://doi.org/10.1002/grl.50647.

    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: A simple model of climatological rainfall and vertical motion patterns over the tropical oceans. J. Climate, 22, 64776497, https://doi.org/10.1175/2009JCLI2393.1.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2013: The access coupled model: Description, control climate and evaluation. Aust. Meteor. Oceanogr. J., 63, 4164, https://doi.org/10.22499/2.6301.004.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., P. H. Whetton, and A. B. Pittock, 2001: Fluctuations of the relationship between ENSO and northeast Australian rainfall. Climate Dyn., 17, 421432, https://doi.org/10.1007/PL00013738.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, and L. Ricciardulli, 2018: The nature of the stochastic wind forcing of ENSO. J. Climate, 31, 80818099, https://doi.org/10.1175/JCLI-D-17-0842.1.

    • Search Google Scholar
    • Export Citation
  • Dhame, S., A. S. Taschetto, A. Santoso, and K. J. Meissner, 2020: Indian Ocean warming modulates global atmospheric circulation trends. Climate Dyn., 55, 20532073, https://doi.org/10.1007/s00382-020-05369-1.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and S. G. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

    • Search Google Scholar
    • Export Citation
  • Funk, C., M. D. Dettinger, J. C. Michaelsen, J. P. Verdin, M. E. Brown, M. Barlow, and A. Hoell, 2008: Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl. Acad. Sci. USA, 105, 11 08111 086, https://doi.org/10.1073/pnas.0708196105.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Han, X., and C. Wang, 2021: Weakened feedback of the Indian Ocean on El Niño since the early 1990s. Climate Dyn., 57, 879894, https://doi.org/10.1007/s00382-021-05745-5.

    • Search Google Scholar
    • Export Citation
  • Inoue, K., Á. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber–frequency domain. J. Atmos. Sci., 77, 21392162, https://doi.org/10.1175/JAS-D-19-0209.1.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., J. Vialard, H. Dayan, M. Lengaigne, and I. Suresh, 2016: A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean dipole and basin influences on El Niño. Climate Dyn., 46, 22472268, https://doi.org/10.1007/s00382-015-2700-4.

    • Search Google Scholar
    • Export Citation
  • Karamperidou, C., and Coauthors, 2020: ENSO in a changing climate: Challenges, paleo-perspectives, and outlook. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 471–484, https://doi.org/10.1002/9781119548164.ch21.

  • Kido, S., I. Richter, T. Tozuka, and P. Chang, 2023: Understanding the interplay between ENSO and related tropical SST variability using linear inverse models. Climate Dyn., 61, 10291048, https://doi.org/10.1007/s00382-022-06484-x.

    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006: Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, L09710, https://doi.org/10.1029/2005GL024916.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. Kim, G. R. Foltz, and H. Lopez, 2020: Pantropical response to global warming and the emergence of a La Niña-like mean state trend. Geophys. Res. Lett., 47, e2019GL086497, https://doi.org/10.1029/2019GL086497.

    • Search Google Scholar
    • Export Citation
  • Li, G., and B. Ren, 2012: Evidence for strengthening of the tropical Pacific Ocean surface wind speed during 1979–2001. Theor. Appl. Climatol., 107, 5972, https://doi.org/10.1007/s00704-011-0463-3.

    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Liguori, G., S. McGregor, J. M. Arblaster, M. S. Singh, and G. A. Meehl, 2020: A joint role for forced and internally-driven variability in the decadal modulation of global warming. Nat. Commun., 11, 3827, https://doi.org/10.1038/s41467-020-17683-7.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., R. Zhang, S. K. Behera, Y. Masumoto, F.-F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, 726742, https://doi.org/10.1175/2009JCLI3104.1.

    • Search Google Scholar
    • Export Citation
  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Natl. Acad. Sci. USA, 109, 18 70118 706, https://doi.org/10.1073/pnas.1210239109.

    • Search Google Scholar
    • Export Citation
  • Maher, N., A. S. Gupta, and M. H. England, 2014: Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett., 41, 59785986, https://doi.org/10.1002/2014GL060527.

    • Search Google Scholar
    • Export Citation
  • Maher, N., D. Matei, S. Milinski, and J. Marotzke, 2018: ENSO change in climate projections: Forced response or internal variability? Geophys. Res. Lett., 45, 11 39011 398, https://doi.org/10.1029/2018GL079764.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. J. Holbrook, and S. B. Power, 2007: Interdecadal sea surface temperature variability in the equatorial Pacific Ocean. Part I: The role of off-equatorial wind stresses and oceanic Rossby waves. J. Climate, 20, 26432658, https://doi.org/10.1175/JCLI4145.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J. Climate, 25, 55665586, https://doi.org/10.1175/JCLI-D-11-00332.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013: Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys. Res. Lett., 40, 749754, https://doi.org/10.1002/grl.50136.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., T. Lee, S. Fournier, and M. A. Balmaseda, 2020a: ENSO observations. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 39–63, https://doi.org/10.1002/9781119548164.ch3.

  • McPhaden, M. J., A. Santoso, and W. Cai, Eds., 2020b: El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 506 pp., https://doi.org10.1002/9781119548164.

  • Meehl, G., and Coauthors, 2019: Mutually interactive decadal-timescale processes connecting the tropical Atlantic and Pacific. 2019 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract OS23A-01, https://ui.adsabs.harvard.edu/abs/2019AGUFMOS23A..01M/abstract.

  • Merrifield, M. A., 2011: A shift in western tropical Pacific sea level trends during the 1990s. J. Climate, 24, 41264138, https://doi.org/10.1175/2011JCLI3932.1.

    • Search Google Scholar
    • Export Citation
  • Mishra, V., B. V. Smoliak, D. P. Lettenmaier, and J. M. Wallace, 2012: A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl. Acad. Sci. USA, 109, 72137217, https://doi.org/10.1073/pnas.1119150109.

    • Search Google Scholar
    • Export Citation
  • Naha, R., 2022: Interbasin influences on the Pacific basin mean state. Ph.D. thesis, Monash University, 137 pp., https://bridges.monash.edu/articles/thesis/Interbasin_Influences_on_the_Pacific_Basin_Mean_State/22339624.

  • Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 26114 290, https://doi.org/10.1029/97JC03424.

    • Search Google Scholar
    • Export Citation
  • Neske, S., and S. McGregor, 2018: Understanding the warm water volume precursor of ENSO events and its interdecadal variation. Geophys. Res. Lett., 45, 15771585, https://doi.org/10.1002/2017GL076439.

    • Search Google Scholar
    • Export Citation
  • Ohba, M., and H. Ueda, 2007: An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85, 335348, https://doi.org/10.2151/jmsj.85.335.

    • Search Google Scholar
    • Export Citation
  • Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24, 38223829, https://doi.org/10.1175/2011JCLI3999.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 2019: Stochastic weather and climate models. Nat. Rev. Phys., 1, 463471, https://doi.org/10.1038/s42254-019-0062-2.

  • Power, S., and R. Colman, 2006: Multi-year predictability in a coupled general circulation model. Climate Dyn., 26, 247272, https://doi.org/10.1007/s00382-005-0055-y.

    • Search Google Scholar
    • Export Citation
  • Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.

    • Search Google Scholar
    • Export Citation
  • Ren, H.-L., J. Zuo, F.-F. Jin, and M. F. Stuecker, 2016: ENSO and annual cycle interaction: The combination mode representation in CMIP5 models. Climate Dyn., 46, 37533765, https://doi.org/10.1007/s00382-015-2802-z.

    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., R. Msadek, F. Castruccio, S. Yeager, T. Delworth, and G. Danabasoglu, 2017: Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Climate, 30, 27852810, https://doi.org/10.1175/JCLI-D-16-0127.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003a: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003b: The TRMM Precipitation Radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 15191524, https://doi.org/10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett., 40, 43984403, https://doi.org/10.1002/grl.50796.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination mode dynamics of the anomalous northwest Pacific anticyclone. J. Climate, 28, 10931111, https://doi.org/10.1175/JCLI-D-14-00225.1.

    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Search Google Scholar
    • Export Citation
  • Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of tropical Indian Ocean warming and ENSO on tropical cyclone activity over the western North Pacific. J. Meteor. Soc. Japan, 90, 127144, https://doi.org/10.2151/jmsj.2012-107.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. Program for Climate Model Diagnosis and Intercomparison Rep. 60, 28 pp., https://pcmdi.llnl.gov/report/ab60.html.

  • Timmermann, A., J. Oberhuber, A. Bacher, M. Esch, M. Latif, and E. Roeckner, 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694697, https://doi.org/10.1038/19505.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and T. J. Hoar, 1997: El Niño and climate change. Geophys. Res. Lett., 24, 30573060, https://doi.org/10.1029/97GL03092.

    • Search Google Scholar
    • Export Citation
  • Ueda, H., Y. Kamae, M. Hayasaki, A. Kitoh, S. Watanabe, Y. Miki, and A. Kumai, 2015: Combined effects of recent Pacific cooling and Indian Ocean warming on the Asian monsoon. Nat. Commun., 6, 8854, https://doi.org/10.1038/ncomms9854.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., 2005: The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Climate, 18, 20802092, https://doi.org/10.1175/JCLI3365.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and R. Lukas, 1999: Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J. Meteor. Soc. Japan, 77 (1), 116, https://doi.org/10.2151/jmsj1965.77.1_1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., X. Luo, Y.-M. Yang, W. Sun, M. A. Cane, W. Cai, S.-W. Yeh, and J. Liu, 2019: Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA, 116, 22 51222 517, https://doi.org/10.1073/pnas.1911130116.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J.-Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Search Google Scholar
    • Export Citation
  • Weisberg, R. H., and C. Wang, 1997: A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett., 24, 779782, https://doi.org/10.1029/97GL00689.

    • Search Google Scholar
    • Export Citation
  • Williams, A. I. L., N. Jeevanjee, and J. Bloch-Johnson, 2023: Circus tents, convective thresholds, and the non-linear climate response to tropical SSTs. Geophys. Res. Lett., 50, e2022GL101499, https://doi.org/10.1029/2022GL101499.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and R. Plant, 2012: Interactions between shallow and deep convection under a finite departure from convective quasi equilibrium. J. Atmos. Sci., 69, 34633470, https://doi.org/10.1175/JAS-D-12-0108.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., and A. Timmermann, 2018: Decadal monsoon–ENSO relationships reexamined. Geophys. Res. Lett., 45, 20142021, https://doi.org/10.1002/2017GL076912.

    • Search Google Scholar
    • Export Citation
  • Zelle, H., G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh, 2004: The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J. Phys. Oceanogr., 34, 643655, https://doi.org/10.1175/2523.1.

    • Search Google Scholar
    • Export Citation
  • Zeller, M., S. McGregor, E. van Sebille, A. Capotondi, and P. Spence, 2021: Subtropical-tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Climate Dyn., 56, 11311144, https://doi.org/10.1007/s00382-020-05524-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., S.-P. Xie, and Q. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 61466164, https://doi.org/10.1175/2011JCLI4169.1.

    • Search Google Scholar
    • Export Citation
  • Zhuang, Y., R. Fu, J. A. Marengo, and H. Wang, 2017: Seasonal variation of shallow-to-deep convection transition and its link to the environmental conditions over the central Amazon. J. Geophys. Res. Atmos., 122, 26492666, https://doi.org/10.1002/2016JD025993.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 736 736 21
Full Text Views 210 210 16
PDF Downloads 208 208 13