Is the Climate of the Congo basin Becoming Less Able to Support a Tropical Forest Ecosystem?

Edward K. Vizy aDepartment of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Edward K. Vizy in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5019-2819
,
Harisankar Manoj aDepartment of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Harisankar Manoj in
Current site
Google Scholar
PubMed
Close
, and
Kerry H. Cook aDepartment of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas

Search for other papers by Kerry H. Cook in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ongoing degradation of the Congolese rain forest is documented, but the individual roles of climate change and deforestation are unknown. A modified version of the Centro de Previsao de Tempo e Estudios Climaticos (CPTEC) potential vegetation model (PVM) forced by ERA5 reanalysis data translates decadal climate states (1980–2020) into natural vegetation distributions to identify regions where climate change could have played a role in changing vegetation. These areas are then examined to understand how and why these climate changes could affect the tropical rain forest coverage. Between the 1980s and the 2010s, the climate over the northern and southern Congo basin rain forest margins becomes less able to support the forest. In the north, strong, negative meridional moisture gradients in boreal winter separate warm, dry conditions to the north from the cooler, moist rain forest. By the 2010s greenhouse gas warming deepens the low-level trough in the north, enhancing the inflow of drier subtropical air. A similar drying response occurs over the southern margin during austral winter when the low-level westerly transport of Atlantic moisture decreases in association with warming and reduced low-level heights over the equatorial Congo basin. In the interior, climate conditions also become less favorable along major transportation routes by the 2010s due to human intervention/deforestation. Along coastal Angola, the climate becomes more favorable for tropical forest vegetation when coastal upwelling weakens and SSTs warm in response to changes in the South Atlantic subtropical anticyclone. These results have implications for the future as global warming continues.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward K. Vizy, ned@jsg.utexas.edu

Abstract

Ongoing degradation of the Congolese rain forest is documented, but the individual roles of climate change and deforestation are unknown. A modified version of the Centro de Previsao de Tempo e Estudios Climaticos (CPTEC) potential vegetation model (PVM) forced by ERA5 reanalysis data translates decadal climate states (1980–2020) into natural vegetation distributions to identify regions where climate change could have played a role in changing vegetation. These areas are then examined to understand how and why these climate changes could affect the tropical rain forest coverage. Between the 1980s and the 2010s, the climate over the northern and southern Congo basin rain forest margins becomes less able to support the forest. In the north, strong, negative meridional moisture gradients in boreal winter separate warm, dry conditions to the north from the cooler, moist rain forest. By the 2010s greenhouse gas warming deepens the low-level trough in the north, enhancing the inflow of drier subtropical air. A similar drying response occurs over the southern margin during austral winter when the low-level westerly transport of Atlantic moisture decreases in association with warming and reduced low-level heights over the equatorial Congo basin. In the interior, climate conditions also become less favorable along major transportation routes by the 2010s due to human intervention/deforestation. Along coastal Angola, the climate becomes more favorable for tropical forest vegetation when coastal upwelling weakens and SSTs warm in response to changes in the South Atlantic subtropical anticyclone. These results have implications for the future as global warming continues.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Edward K. Vizy, ned@jsg.utexas.edu
Save
  • Asefi-Najafabady, S., and S. Saatchi, 2013: Response of African humid tropical forest to recent rainfall anomalies. Philos. Trans. Roy. Soc., B368, 20120306, https://doi.org/10.1098/rstb.2012.0306.

    • Search Google Scholar
    • Export Citation
  • Baker, J. C. A., and D. V. Spracklen, 2022: Divergent representation of precipitation recycling in the Amazon and Congo in CMIP6 models. Geophys. Res. Lett., 49, e2021GL095136, https://doi.org/10.1029/2021GL095136.

    • Search Google Scholar
    • Export Citation
  • Betts, M. G., and Coauthors, 2019: Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 366, 12361239, https://doi.org/10.1126/science.aax9387.

    • Search Google Scholar
    • Export Citation
  • Broxton, P. D., X. Zeng, D. Sulla-Menashe, and P. A. Troch, 2014: A global land cover climatology using MODIS data. J. Appl. Meteor. Climatol., 53, 15931605, https://doi.org/10.1175/JAMC-D-13-0270.1.

    • Search Google Scholar
    • Export Citation
  • Burnett, M. W., G. R. Quetin, and A. G. Konings, 2020: Data-driven estimates of evapotranspiration and its controls in the Congo basin. Hydrol. Earth Syst. Sci., 24, 41894211, https://doi.org/10.5194/hess-24-4189-2020.

    • Search Google Scholar
    • Export Citation
  • Cardoso, M. F., C. A. Nobre, D. M. Lapola, M. D. Oyama, and G. Sampaio, 2008: Long-term potential for fires in estimates of the occurrence of savannas in the tropics. Global Ecol. Biogeogr., 17, 222235, https://doi.org/10.1111/j.1466-8238.2007.00356.x.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1217–1308.

  • Cook, K. H., and E. K. Vizy, 2008: Effects of 21st century climate change on the Amazon rainforest. J. Climate, 21, 542560, https://doi.org/10.1175/2007JCLI1838.1.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2015: Detection and analysis of an amplified warming of the Sahara Desert. J. Climate, 28, 65606580, https://doi.org/10.1175/JCLI-D-14-00230.1.

    • Search Google Scholar
    • Export Citation
  • Cook, K. H., Y. Liu, and E. K. Vizy, 2020: Congo basin drying associated with poleward shifts of the African thermal lows. Climate Dyn., 54, 863883, https://doi.org/10.1007/s00382-019-05033-3.

    • Search Google Scholar
    • Export Citation
  • Creese, A., R. Washington, and R. Jones, 2019: Climate change in the Congo basin: Processes related to wetting in the December–February dry season. Climate Dyn., 53, 35833602, https://doi.org/10.1007/s00382-019-04728-x.

    • Search Google Scholar
    • Export Citation
  • Dargie, G. C., S. L. Lewis, I. T. Lawson, E. T. A. Mitchard, S. E. Page, Y. E. Bocko, and S. A. Ifo, 2017: Age, extent and carbon storage of the central Congo basin peatland complex. Nature, 542, 8690, https://doi.org/10.1038/nature21048.

    • Search Google Scholar
    • Export Citation
  • Dezfuli, A. K., and S. E. Nicholson, 2013: The relationship of rainfall variability in western equatorial Africa to the tropical oceans and atmospheric circulation. Part II: The boreal autumn. J. Climate, 26, 6684, https://doi.org/10.1175/JCLI-D-11-00686.1.

    • Search Google Scholar
    • Export Citation
  • Díaz, S., and Coauthors, 2019: Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 39 pp., https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf.

  • Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018: Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Search Google Scholar
    • Export Citation
  • Dyer, E. L. E., D. B. A. Jones, J. Nusbaumer, H. Li, O. Collins, G. Vettoretti, and D. Noone, 2017: Congo basin precipitation: Assessing seasonality, regional interactions, and sources of moisture. J. Geophys. Res. Atmos., 122, 68826898, https://doi.org/10.1002/2016JD026240.

    • Search Google Scholar
    • Export Citation
  • Ernst, C., P. Mayaus, A. Verhegghen, C. Bodart, M. Christophe, and P. Defourny, 2013: National forest cover change in Congo basin: Deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Global Change Biol., 19, 11731187, https://doi.org/10.1111/gcb.12092.

    • Search Google Scholar
    • Export Citation
  • ESA, 2017: Land Cover CCI Product User Guide version 2. Tech. Rep., 87 pp., https://www.esa-landcover-cci.org/?q=webfm_send/84.

  • Eyring, V., and Coauthors, 2021: Human influence on the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte, et al. eds., Cambridge University Press, 423–552, https://doi.org/10.1017/9781009157896.005.

  • FAO, 2011: The state of the Amazon Basin, Congo Basin and Southeast Asia. Food and Agriculture Organization of the United Nations, 80 pp., https://www.fao.org/3/i2247e/i2247e00.pdf.

  • Funk, C., and Coauthors, 2015: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 51495454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gleixner, S., T. Demissie, and G. T. Diro, 2020: Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere, 11, 996, https://doi.org/10.3390/atmos11090996.

    • Search Google Scholar
    • Export Citation
  • Global Forest Watch, 2022: Global Forest Watch: Forest monitoring designed for action. World Resources Institute, accessed 24 October 2022, https://www.globalforestwatch.org.

  • Guan, K., and Coauthors, 2015: Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci., 8, 284289, https://doi.org/10.1038/ngeo2382.

    • Search Google Scholar
    • Export Citation
  • Haddad, N., and Coauthors, 2015: Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv., 1, e1500052, https://doi.org/10.1126/sciadv.1500052.

    • Search Google Scholar
    • Export Citation
  • Haensler, A., F. Saeed, and D. Jacob, 2013: Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Climatic Change, 121, 349363, https://doi.org/10.1007/s10584-013-0863-8.

    • Search Google Scholar
    • Export Citation
  • Hansen, M. C., and Coauthors, 2014: High resolution global maps of 21st-century forest cover change. Science, 342, 850853, https://doi.org/10.1126/science.1244693.

    • Search Google Scholar
    • Export Citation
  • Harris, N. L., and Coauthors, 2021: Global maps of twenty-first century forest carbon fluxes. Nat. Climate Change, 11, 234240, https://doi.org/10.1038/s41558-020-00976-6.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2009: Variability in sea-surface temperature and winds in the tropical south-east Atlantic Ocean and regional rainfall relationships. Int. J. Climatol., 29, 1121, https://doi.org/10.1002/joc.1711.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Howard, E., and R. Washington, 2018: Characterizing the synoptic expression of the Angola low. J. Climate, 31, 71477165, https://doi.org/10.1175/JCLI-D-18-0017.1.

    • Search Google Scholar
    • Export Citation
  • Hua, W., L. Zhou, H. Chen, S. E. Nicholson, A. Raghavendra, and Y. Jiang, 2016: Possible causes of the central equatorial African long-term drought. Environ. Res. Lett., 11, 124002, https://doi.org/10.1088/1748-9326/11/12/124002.

    • Search Google Scholar
    • Export Citation
  • Hua, W., L. Zhou, H. Chen, S. E. Nicholson, Y. Jiang, and A. Raghavendra, 2018: Understanding the central equatorial Africa long-term drought using AMIP-type simulations. Climate Dyn., 50, 11151128, https://doi.org/10.1007/s00382-017-3665-2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2391 pp., https://doi.org/10.1017/9781009157896.

  • Kleinschroth, F., N. Laporte, W. F. Laurance, S. J. Goetz, and J. Ghazoul, 2019: Road expansion and persistence in forests of the Congo basin. Nat. Sustainability, 2, 628634, https://doi.org/10.1038/s41893-019-0310-6.

    • Search Google Scholar
    • Export Citation
  • Kranz, O., E. Schoepfer, R. Tegtmeyer, and S. Lang, 2018: Earth observation based multi-scale assessment of logging activities in the Democratic Republic of the Congo. ISPRS J. Photogramm. Remote Sens., 144, 254267, https://doi.org/10.1016/j.isprsjprs.2018.07.012.

    • Search Google Scholar
    • Export Citation
  • Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Youing, and J. W. Merchant, 2000: Development of a global land cover characteristic database and IGB6 DISCover from the 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, https://doi.org/10.1080/014311600210191.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., C. W. Böning, N. S. Keenlyside, and S.-P. Xie, 2010: On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic anticyclone. J. Geophys. Res., 115, C09015, https://doi.org/10.1029/2009JC005964.

    • Search Google Scholar
    • Export Citation
  • Lübbecke, J. F., N. J. Burls, C. J. C. Reason, and M. J. McPhaden, 2014: Variability in the South Atlantic anticyclone and the Atlantic Niño mode. J. Climate, 27, 81358150, https://doi.org/10.1175/JCLI-D-14-00202.1.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., R. P. Allan, and E. Black, 2015: Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett., 42, 81558164, https://doi.org/10.1002/2015GL065765.

    • Search Google Scholar
    • Export Citation
  • Maidment, R. I., and Coauthors, 2017: A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data, 4, 170063, https://doi.org/10.1038/sdata.2017.63.

    • Search Google Scholar
    • Export Citation
  • Molinario, G., M. Hansen, P. Potapov, A. Tyukavina, and S. Stehman, 2020: Contextualizing landscape-scale forest cover loss in the Democratic Republic of Congo (DRC) between 2000 and 2015. Land, 9, 23, https://doi.org/10.3390/land9010023.

    • Search Google Scholar
    • Export Citation
  • Munday, C., and R. Washington, 2017: Circulation controls on southern African precipitation in coupled models: The role of the Angola low. J. Geophys. Res. Atmos., 122, 861877, https://doi.org/10.1002/2016JD025736.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., J. Kim, M. B. Ba, and A. R. Lare, 1997: The mean surface water balance over Africa and its interannual variability. J. Climate, 10, 29813002, https://doi.org/10.1175/1520-0442(1997)010<2981:TMSWBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., D. Klotter, L. Zhou, and W. Hua, 2019: Validation of satellite precipitation estimates over the Congo basin. J. Hydrometeor., 20, 631656, https://doi.org/10.1175/JHM-D-18-0118.1.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., D. Klotter, L. Zhou, and W. Hua, 2022: Recent rainfall conditions in the Congo basin. Environ. Res. Lett., 17, 054052, https://doi.org/10.1088/1748-9326/ac61c4.

    • Search Google Scholar
    • Export Citation
  • Novella, N. S., and W. M. Thiaw, 2013: African Rainfall Climatology version 2 for famine early warning systems. J. Appl. Meteor. Climatol., 52, 588606, https://doi.org/10.1175/JAMC-D-11-0238.1.

    • Search Google Scholar
    • Export Citation
  • Oyama, M. D., and C. A. Nobre, 2004: A simple potential vegetation model for coupling with Simple Biosphere Model (SiB). Braz. J. Meteor., 19, 203216.

    • Search Google Scholar
    • Export Citation
  • Parker, D., and Coauthors, 2005: The diurnal cycle of the West African monsoon circulation. Quart. J. Roy. Meteor. Soc., 131, 28392860, https://doi.org/10.1256/qj.04.52.

    • Search Google Scholar
    • Export Citation
  • Philippon, N., and Coauthors, 2019: The light-deficient climates of western Central African evergreen forests. Environ. Res. Lett., 14, 034007, https://doi.org/10.1088/1748-9326/aaf5d8.

    • Search Google Scholar
    • Export Citation
  • Pokam, W. M., L. A. T. Djiotang, and F. K. Mkankam, 2012: Atmospheric water vapor transport and recycling in equatorial Central Africa through NCEP/NCAR reanalysis data. Climate Dyn., 38, 17151729, https://doi.org/10.1007/s00382-011-1242-7.

    • Search Google Scholar
    • Export Citation
  • Pokam, W. M., C. L. Bain, R. S. Chadwick, R. Grahm, D. J. Sonwa, and F. M. Kamga, 2014: Identification of processes driving low-level westerlies in west equatorial Africa. J. Climate, 27, 42454262, https://doi.org/10.1175/JCLI-D-13-00490.1.

    • Search Google Scholar
    • Export Citation
  • Potapov, P., and Coauthors, 2017: The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv., 3, e1600821, https://doi.org/10.1126/sciadv.1600821.

    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., W. Cramer, S. P. Harrison, R. Leemans, R. A. Monserud, and A. M. Solomon, 1992: A global biome model based on plant physiology and dominance, soil properties, and climate. J. Biogeogr., 19, 117134, https://doi.org/10.2307/2845499.

    • Search Google Scholar
    • Export Citation
  • Quinlan, J. R., 1993: C4.5: Program for Machine Learning. Morgan Kaufmann, 302 pp.

  • Reboita, M. S., T. Ambrizzi, B. A. Silva, R. F. Pinheiro, and R. P. da Rocha, 2019: The South Atlantic subtropical anticyclone: Present and future climate. Front. Earth Sci., 7, 8, https://doi.org/10.3389/feart.2019.00008.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S. K. Behera, Y. Masumoto, B. Taguchi, N. Komori, and T. Yamagata, 2010: On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophys. Res. Lett., 37, L20604, https://doi.org/10.1029/2010GL044461.

    • Search Google Scholar
    • Export Citation
  • Riddell, M., 2013: Assessing the impacts of conservation and commercial forestry on livelihoods in northern Republic of Congo. Conserv. Soc., 11, 199, https://doi.org/10.4103/0972-4923.121002.

    • Search Google Scholar
    • Export Citation
  • Risi, C., D. Noone, C. Frankenberg, and J. Worden, 2013: Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements. Water Resour. Res., 49, 41364156, https://doi.org/10.1002/wrcr.20312.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A. C., H. S. Grantham, N. Aguilar-Amuchastegui, N. J. Murray, V. Gond, D. Bonfils, and O. Rickenbach, 2021: Forest condition in the Congo basin for the assessment of ecosystem conservation status. Ecol. Indic., 122, 107268, https://doi.org/10.1016/j.ecolind.2020.107268.

    • Search Google Scholar
    • Export Citation
  • Singh, C., R. van der Ent, L. Wang-Erlandsson, and I. Fetzer, 2021: Hydroclimatic adaptation critical to the resilience of tropical forests. Global Change Biol., 28, 29302939, https://doi.org/10.1111/gcb.16115.

    • Search Google Scholar
    • Export Citation
  • Sonwa, D. J., J. N. Nkem, M. E. Idinoba, M. Y. Bele, and C. Jum, 2012: Building regional priorities in forests for development and adaptation to climate change in the Congo basin. Mitigation Adapt. Strategies Global Change, 17, 441450, https://doi.org/10.1007/s11027-011-9335-5.

    • Search Google Scholar
    • Export Citation
  • Sonwa, D. J., M. O. Farikou, G. Martial, and F. L. Félix, 2020: Living under a fluctuating climate and a drying Congo basin. Sustainability, 12, 2936, https://doi.org/10.3390/su12072936.

    • Search Google Scholar
    • Export Citation
  • Sorí, R., R. Nieto, S. M. Vicente-Serrano, A. Drumond, and L. Gimeno, 2017: A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn., 8, 653675, https://doi.org/10.5194/esd-8-653-2017.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Staal, A., I. Fetzer, L. Wang-Erlandsson, J. H. C. Bosmans, S. C. Dekker, E. H. van Nes, J. Rockström, and O. A. Tuinenburg, 2020: Hysteresis of tropical forests in the 21st century. Nat. Commun., 11, 4978, https://doi.org/10.1038/s41467-020-18728-7.

    • Search Google Scholar
    • Export Citation
  • Steinkopf, J., and F. Engelbrecht, 2022: Verification of ERA5 and ERA-Interim precipitation over Africa at intra-annual and interannual timescales. Atmos. Res., 280, 106427, https://doi.org/10.1016/j.atmosres.2022.106427.

    • Search Google Scholar
    • Export Citation
  • Sternberg, L. S. L., 2001: Savanna–forest hysteresis in the tropics. Global Ecol. Biogeogr., 10, 369378, https://doi.org/10.1046/j.1466-822X.2001.00243.x.

    • Search Google Scholar
    • Export Citation
  • Sun, X., K. H. Cook, and E. K. Vizy, 2017: The South Atlantic subtropical high: Climatology and interannual variability. J. Climate, 30, 32793296, https://doi.org/10.1175/JCLI-D-16-0705.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. H. Fink, C. Klein, D. J. Parker, F. Guichard, P. P. Harris, and K. R. Knapp, 2018: Earlier seasonal onset of intense mesoscale convective systems in the Congo basin since 1999. Geophys. Res. Lett., 45, 13 45813 467, https://doi.org/10.1029/2018GL080516.

    • Search Google Scholar
    • Export Citation
  • Tuinenburg, O. A., J. J. E. Theeuwen, and A. Staal, 2020: High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data, 12, 31773188, https://doi.org/10.5194/essd-12-3177-2020.

    • Search Google Scholar
    • Export Citation
  • Turubanova, S., P. V. Potapov, A. Tyukavina, and M. C. Hansen, 2018: Ongoing primary forest loss in Brazil, Democratic Republic of Congo, and Indonesia. Environ. Res. Lett., 13, 074028, https://doi.org/10.1088/1748-9326/aacd1c.

    • Search Google Scholar
    • Export Citation
  • Tyukavina, A., M. C. Hansen, P. Potapov, D. Parker, C. Okpa, S. V. Stehman, I. Kommareddy, and S. Turubanova, 2018: Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv., 4, eaat2993, https://doi.org/10.1126/sciadv.aat2993.

    • Search Google Scholar
    • Export Citation
  • Vigaud, N., Y. Richard, M. Rouault, and N. Fauchereau, 2009: Moisture transport between the South Atlantic Ocean and southern Africa: Relationships with summer rainfall and associated dynamics. Climate Dyn., 32, 113123, https://doi.org/10.1007/s00382-008-0377-7.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2016: Understanding long-term (1982–2013) multi-decadal change in the equatorial and subtropical South Atlantic climate. Climate Dyn., 46, 20872113, https://doi.org/10.1007/s00382-015-2691-1.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., and K. H. Cook, 2017: Seasonality of the observed amplified Sahara warming trend and implications for Sahel rainfall. J. Climate, 30, 30733094, https://doi.org/10.1175/JCLI-D-16-0687.1.

    • Search Google Scholar
    • Export Citation
  • Vizy, E. K., K. H. Cook, and X. Sun, 2018: Decadal change of the South Atlantic Ocean Angola-Benguela frontal zone since 1980. Climate Dyn., 51, 32513273, https://doi.org/10.1007/s00382-018-4077-7.

    • Search Google Scholar
    • Export Citation
  • Wang, X.-Y., J. Zhu, M. Xin, C. Song, Y. Li, Y. Zhou, and X. Li, 2021: Weakened seasonality of the African rainforest precipitation in boreal winter and spring driven by tropical SST variabilities. Geosci. Lett., 8, 22, https://doi.org/10.1186/s40562-021-00192-w.

    • Search Google Scholar
    • Export Citation
  • Ward, N., A. H. Fink, R. J. Kene, and D. J. Parker, 2022: Upper-level midlatitude troughs in boreal winter have an amplified low-latitude linkage over Africa. Atmos. Sci. Lett., 24, e1129, https://doi.org/10.1002/asl.1129.

    • Search Google Scholar
    • Export Citation
  • Washington, R., R. James, H. Pearce, W. M. Pokam, and W. Moufouma-Okia, 2013: Congo basin rainfall climatology: Can we believe the climate models? Philos. Trans. Roy. Soc., B368, 20120296, https://doi.org/10.1098/rstb.2012.0296.

    • Search Google Scholar
    • Export Citation
  • Wilkie, D., G. Morelli, F. Rotberg, and E. Shaw, 1999: Wetter isn’t better: Global warming and food security in the Congo basin. Global Environ. Change, 9, 323328, https://doi.org/10.1016/S0959-3780(99)00021-7.

    • Search Google Scholar
    • Export Citation
  • Worden, S., R. Fu, S. Chakraborty, J. Liu, and J. Worden, 2021: Where does moisture come from over the Congo basin? J. Geophys. Res. Biogeosci., 126, e2020JG006024, https://doi.org/10.1029/2020JG006024.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., and Coauthors, 2020: Differences in tropical high clouds among reanalyses: Origins and radiative impacts. Atmos. Chem. Phys., 20, 89899030, https://doi.org/10.5194/acp-20-8989-2020.

    • Search Google Scholar
    • Export Citation
  • Zhou, L. M., and Coauthors, 2014: Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 8690, https://doi.org/10.1038/nature13265.

    • Search Google Scholar
    • Export Citation
  • Zunckel, M., Y. Hong, K. Brassel, and S. O’Beirne, 1996: Characteristics of the nocturnal boundary layer: Okaukuejo, Namibia, during SAFARI-92. J. Geophys. Res., 101, 23 75723 766, https://doi.org/10.1029/95JD00624.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 718 718 42
Full Text Views 186 186 2
PDF Downloads 219 219 2