Synergistic Effect of Warming in the Tropical Indian Ocean and North Tropical Atlantic on the Central-Pacific Type of La Niña Based on Observations and CMIP5

Guang Yang aCenter for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Laoshan Laboratory, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Guang Yang in
Current site
Google Scholar
PubMed
Close
,
Xia Zhao dCAS Key Laboratory of Ocean Circulation and Waves, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Laoshan Laboratory, Qingdao, Shandong, China
eUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xia Zhao in
Current site
Google Scholar
PubMed
Close
,
Dongliang Yuan fKey Laboratory of Marine Science and Numerical Modeling, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Dongliang Yuan in
Current site
Google Scholar
PubMed
Close
,
Yazhou Zhang gKey Laboratory of Physical Oceanography, College of Oceanic and Atmospheric Science, Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), Academy of the Future Ocean, Ocean University of China, Qingdao, China

Search for other papers by Yazhou Zhang in
Current site
Google Scholar
PubMed
Close
,
Lin Liu aCenter for Ocean and Climate Research, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
bLaboratory for Regional Oceanography and Numerical Modeling, Laoshan Laboratory, Qingdao, China
cShandong Key Laboratory of Marine Science and Numerical Modeling, Qingdao, China

Search for other papers by Lin Liu in
Current site
Google Scholar
PubMed
Close
, and
Shiqiu Peng hState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Shiqiu Peng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have indicated that boreal winter-to-spring sea surface temperature anomalies (SSTA) over the tropical Atlantic or Indian Ocean can trigger the central-Pacific (CP) type of ENSO in the following winter due to winds over the western Pacific. Here, with the aid of observational data and CMIP5 model simulations, we demonstrate that the ability of the winter-to-spring north tropical Atlantic (NTA) SSTA or Indian Ocean Basin (IOB) mode to initiate CP ENSO events in the following winter may strongly depend on each other. Most warming events of the IOB and NTA, which are followed by CP La Niña events, are concomitant. The synergistic effect of the IOB and NTA SSTA may produce greater CP ENSO events in the subsequent winter via Walker circulation adjustments. The impacts between warming and cooling events of the IOB and NTA SSTA are asymmetric. IOB and NTA warmings appear to contribute to the subsequent CP La Niña development, which is much greater than IOB and NTA cooling contributing to CP El Niño. Overall, a combination of the IOB and NTA SSTA precursors may improve predictions of La Niña events.

Significance Statement

Although boreal winter-to-spring sea surface temperature anomalies over the tropical Atlantic or Indian Ocean can trigger central-Pacific (CP) ENSO in the following winter, it is not yet clear whether the effects of these two basins are independent. The purpose of this study is to better understand the joint effect of these two basins on CP ENSO events. We demonstrate that the ability of the north tropical Atlantic (NTA) SSTA to initiate CP ENSO events in the following winter may strongly depend on the state of the Indian Ocean Basin mode (IOB). The synergistic impact of these two basins may produce stronger CP ENSO events. These results highlight the role of three-ocean interactions in ENSO diversity and prediction.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xia Zhao, zhaoxia@qdio.ac.cn

Abstract

Previous studies have indicated that boreal winter-to-spring sea surface temperature anomalies (SSTA) over the tropical Atlantic or Indian Ocean can trigger the central-Pacific (CP) type of ENSO in the following winter due to winds over the western Pacific. Here, with the aid of observational data and CMIP5 model simulations, we demonstrate that the ability of the winter-to-spring north tropical Atlantic (NTA) SSTA or Indian Ocean Basin (IOB) mode to initiate CP ENSO events in the following winter may strongly depend on each other. Most warming events of the IOB and NTA, which are followed by CP La Niña events, are concomitant. The synergistic effect of the IOB and NTA SSTA may produce greater CP ENSO events in the subsequent winter via Walker circulation adjustments. The impacts between warming and cooling events of the IOB and NTA SSTA are asymmetric. IOB and NTA warmings appear to contribute to the subsequent CP La Niña development, which is much greater than IOB and NTA cooling contributing to CP El Niño. Overall, a combination of the IOB and NTA SSTA precursors may improve predictions of La Niña events.

Significance Statement

Although boreal winter-to-spring sea surface temperature anomalies over the tropical Atlantic or Indian Ocean can trigger central-Pacific (CP) ENSO in the following winter, it is not yet clear whether the effects of these two basins are independent. The purpose of this study is to better understand the joint effect of these two basins on CP ENSO events. We demonstrate that the ability of the north tropical Atlantic (NTA) SSTA to initiate CP ENSO events in the following winter may strongly depend on the state of the Indian Ocean Basin mode (IOB). The synergistic impact of these two basins may produce stronger CP ENSO events. These results highlight the role of three-ocean interactions in ENSO diversity and prediction.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xia Zhao, zhaoxia@qdio.ac.cn
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Search Google Scholar
    • Export Citation
  • Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 19992018, https://doi.org/10.1007/s00382-013-1783-z.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Capotondi, A., A. T. Wittenberg, J.-S. Kug, K. Takahashi, and M. J. McPhaden, 2020: ENSO diversity. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 65–86, https://doi.org/10.1002/9781119548164.ch4.

  • Chang, P., L. Ji, and H. Li, 1997: A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385, 516518, https://doi.org/10.1038/385516a0.

    • Search Google Scholar
    • Export Citation
  • Chen, M., J.-Y. Yu, X. Wang, and S. Chen, 2021: Distinct onset mechanisms of two subtypes of CP El Niño and their changes in future warming. Geophys. Res. Lett., 48, e2021GL093707, https://doi.org/10.1029/2021GL093707.

    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Climate, 17, 41434158, https://doi.org/10.1175/JCLI4953.1.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., P. van der Vaart, and J. Marshall, 2002: A diagnostic study of the role of remote forcing in tropical Atlantic variability. J. Climate, 15, 32803290, https://doi.org/10.1175/1520-0442(2002)015<3280:ADSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dayan, H., T. Izumo, J. Vialard, M. Lengaigne, and S. Masson, 2015: Do regions outside the tropical Pacific influence ENSO through atmospheric teleconnections? Climate Dyn., 45, 583601, https://doi.org/10.1007/s00382-014-2254-x.

    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, Y.-H. Tseng, C. Sun, and F. Zheng, 2017: Linking a sea level pressure anomaly dipole over North America to the central Pacific El Niño. Climate Dyn., 49, 13211339, https://doi.org/10.1007/s00382-016-3389-8.

    • Search Google Scholar
    • Export Citation
  • Du, Y., S.-P. Xie, Y.-L. Yang, X.-T. Zheng, L. Liu, and G. Huang, 2013: Indian Ocean variability in the CMIP5 multimodel ensemble: The basin mode. J. Climate, 26, 72407266, https://doi.org/10.1175/JCLI-D-12-00678.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and D. A. Mayer, 1997: Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J. Geophys. Res., 102, 929945, https://doi.org/10.1029/96JC03296.

    • Search Google Scholar
    • Export Citation
  • Feng, J., and J. Li, 2013: Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J. Climate, 26, 47734789, https://doi.org/10.1175/JCLI-D-12-00298.1.

    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., M. H. England, M. E. Mann, and B. A. Steinman, 2015: Separating internal variability from the externally forced climate response. J. Climate, 28, 81848202, https://doi.org/10.1175/JCLI-D-15-0069.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Guo, W., R. Zhang, and X. Wang, 2021: Impacts of diverse El Niño events on north tropical Atlantic warming in their decaying springs. J. Geophys. Res. Oceans, 126, e2021JC017514, https://doi.org/10.1029/2021JC017514.

    • Search Google Scholar
    • Export Citation
  • Ha, K.-J., J.-E. Chu, J.-Y. Lee, and K.-S. Yun, 2017: Interbasin coupling between the tropical Indian and Pacific Ocean on interannual timescale: Observation and CMIP5 reproduction. Climate Dyn., 48, 459475, https://doi.org/10.1007/s00382-016-3087-6.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., and J.-S. Kug, 2015: Role of north tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 31033117, https://doi.org/10.1007/s00382-015-2527-z.

    • Search Google Scholar
    • Export Citation
  • Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013: Sea surface temperature in the North Tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., T. Li, LinHo, and Y.-C. Chen, 2010: Asymmetry of the Indian Ocean basinwide SST anomalies: Roles of ENSO and IOD. J. Climate, 23, 35633576, https://doi.org/10.1175/2010JCLI3320.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., 2004: Remotely forced variability in the tropical Atlantic Ocean. Climate Dyn., 23, 133152, https://doi.org/10.1007/s00382-004-0443-8.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on following year’s El Niño. Nat. Geosci., 3, 168172, https://doi.org/10.1038/ngeo760.

    • Search Google Scholar
    • Export Citation
  • Izumo, T., M. Lengaigne, J. Vialard, J.-J. Luo, T. Yamagata, and G. Madec, 2014: Influence of Indian Ocean dipole and Pacific recharge on following year’s El Niño: Interdecadal robustness. Climate Dyn., 42, 291310, https://doi.org/10.1007/s00382-012-1628-1.

    • Search Google Scholar
    • Export Citation
  • Jones, I. S. F., and Y. Toba, 2001: Wind Stress over the Ocean. Cambridge University Press, 307 pp.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Search Google Scholar
    • Export Citation
  • Kim, S. T., J.-Y. Yu, A. Kumar, and H. Wang, 2012: Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon. Wea. Rev., 140, 19081923, https://doi.org/10.1175/MWR-D-11-00300.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J. Climate, 19, 17841801, https://doi.org/10.1175/JCLI3660.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., D. B. Enfield, and C. Wang, 2008: Why do some El Niños have no impact on tropical North Atlantic SST? Geophys. Res. Lett., 35, L16705, https://doi.org/10.1029/2008GL034734.

    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Lin, C.-Y., J.-Y. Yu, and H.-H. Hsu, 2015: CMIP5 model simulations of the Pacific meridional mode and its connection to the two types of ENSO. Int. J. Climatol., 35, 23522358, https://doi.org/10.1002/joc.4130.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Sen Gupta, and M. H. England, 2012: Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Climate, 25, 81648176, https://doi.org/10.1175/JCLI-D-12-00105.1.

    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and H. Tokinaga, 2020: An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Climate Dyn., 55, 25792601, https://doi.org/10.1007/s00382-020-05409-w.

    • Search Google Scholar
    • Export Citation
  • Richter, I., S.-P. Xie, S. K. Behera, T. Doi, and Y. Masumoto, 2014: Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Climate Dyn., 42, 171188, https://doi.org/10.1007/s00382-012-1624-5.

    • Search Google Scholar
    • Export Citation
  • Richter, I., H. Tokinaga, Y. Kosaka, T. Doi, and T. Kataoka, 2021: Revisiting the tropical Atlantic influence on El Niño–Southern Oscillation. J. Climate, 34, 85338548, https://doi.org/10.1175/JCLI-D-21-0088.1.

    • Search Google Scholar
    • Export Citation
  • Richter, I., Y. Kosaka, S. Kido, and H. Tokinaga, 2023: The tropical Atlantic as a negative feedback on ENSO. Climate Dyn, 61, 309327, https://doi.org/10.1007/s00382-022-06582-w.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Taschetto, A. S., C. C. Ummenhofer, M. F. Stuecker, D. Dommenget, K. Ashok, R. R. Rodrigues, and S.-W. Yeh, 2020: ENSO atmospheric teleconnections. El Niño Southern Oscillation in a Changing Climate, Geophys. Monogr., Vol. 253, Amer. Geophys. Union, 309–335, https://doi.org/10.1002/9781119548164.ch14.

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, L., J. Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun., 8, 14887, https://doi.org/10.1038/ncomms14887.

    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Tan, and C. Wang, 2018: A new index for identifying different types of El Niño Modoki events. Climate Dyn., 50, 27532765, https://doi.org/10.1007/s00382-017-3769-8.

    • Search Google Scholar
    • Export Citation
  • Wang, X., C. Guan, R. X. Huang, W. Tan, and L. Wang, 2019a: The roles of tropical and subtropical wind stress anomalies in the El Niño Modoki onset. Climate Dyn., 52, 65856597, https://doi.org/10.1007/s00382-018-4534-3.

    • Search Google Scholar
    • Export Citation
  • Wang, X., M. Chen, C. Wang, S. W. Yeh, and W. Tan, 2019b: Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki. Climate Dyn., 52, 13831394, https://doi.org/10.1007/s00382-018-4196-1.

    • Search Google Scholar
    • Export Citation
  • Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University, 475 pp.

  • Wittenberg, A. T., 2004: Extended wind stress analysis for ENSO. J. Climate, 17, 25262540, https://doi.org/10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and Z. He, 2019: Northern tropical Atlantic warming in El Niño decaying spring: Impacts of El Niño amplitude. Geophys. Res. Lett., 46, 14 07214 081, https://doi.org/10.1029/2019GL085840.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 121–142, https://doi.org/10.1029/147GM07.

  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 16011612, https://doi.org/10.1175/1520-0442(2003)016<1601:ICOYSN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G., L. Liu, X. Zhao, Y. Li, Y. Duan, B. Liu, K. Huang, and W. Yu, 2019: Impacts of different types of ENSO events on thermocline variability in the southern tropical Indian Ocean. Geophys. Res. Lett., 46, 67756785, https://doi.org/10.1029/2019GL082818.

    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, and J. Li, 2017: Causes of enhanced SST variability over the equatorial Atlantic and its relationship to the Atlantic zonal mode in CMIP5. J. Climate, 30, 61716182, https://doi.org/10.1175/JCLI-D-16-0866.1.

    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the central Pacific El Niño. J. Climate, 28, 663677, https://doi.org/10.1175/JCLI-D-14-00137.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J., T. Li, Z. Tan, and Z. Zhu, 2016: Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Climate Dyn., 46, 865877, https://doi.org/10.1007/s00382-015-2618-x.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and central-Pacific and eastern-Pacific types of ENSO. J. Climate, 24, 708720, https://doi.org/10.1175/2010JCLI3688.1.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., H.-Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for central-Pacific and eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337344, https://doi.org/10.1007/s00704-010-0307-6.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., P.-k. Kao, H. Paek, H.-H. Hsu, C.-w. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J. Climate, 28, 651662, https://doi.org/10.1175/JCLI-D-14-00347.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., L. Wang, B. Xiang, L. Qi, and J. He, 2015: Impacts of two types of La Niña on the NAO during boreal winter. Climate Dyn., 44, 13511366, https://doi.org/10.1007/s00382-014-2155-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., F. Jiang, M. F. Stuecker, F.-F. Jin, and A. Timmermann, 2021: Spurious north tropical Atlantic precursors to El Niño. Nat. Commun., 12, 3096, https://doi.org/10.1038/s41467-021-23411-6.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., D. Yuan, G. Yang, H. Zhou, and J. Wang, 2016: Role of the oceanic channel in the relationships between the basin/dipole mode of SST anomalies in the tropical Indian Ocean and ENSO transition. Adv. Atmos. Sci., 33, 13861400, https://doi.org/10.1007/s00376-016-6048-4.

    • Search Google Scholar
    • Export Citation
  • Zhao, X., G. Yang, D. Yuan, and Y. Zhang, 2023: Linking the tropical Indian Ocean basin mode to the central-Pacific type of ENSO: Observations and CMIP5 reproduction. Climate Dyn., 60, 17051727, https://doi.org/10.1007/s00382-022-06387-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 327 327 37
Full Text Views 94 94 1
PDF Downloads 133 133 4