Diverse Eurasian Temperature Responses to Arctic Sea Ice Loss in Models due to Varying Balance between Dynamic Cooling and Thermodynamic Warming

Cheng Zheng aLamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Cheng Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8039-346X
,
Yutian Wu aLamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Yutian Wu in
Current site
Google Scholar
PubMed
Close
,
Mingfang Ting aLamont-Doherty Earth Observatory of Columbia University, Palisades, New York

Search for other papers by Mingfang Ting in
Current site
Google Scholar
PubMed
Close
,
James A. Screen bDepartment of Mathematics and Statistics, University of Exeter, Exeter, United Kingdom

Search for other papers by James A. Screen in
Current site
Google Scholar
PubMed
Close
, and
Pengfei Zhang cDepartment of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Pengfei Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cold winters over Eurasia often coincide with warm winters in the Arctic, which has become known as the “warm Arctic–cold Eurasia” pattern. The extent to which this observed correlation is indicative of a causal response to sea ice loss is debated. Here, using large multimodel ensembles of coordinated experiments, we find that the Eurasian temperature response to Arctic sea ice loss is weak compared to internal variability and is not robust across climate models. We show that Eurasian cooling is driven by tropospheric and stratospheric circulation changes in response to sea ice loss but is counteracted by tropospheric thermodynamical warming, as the local warming induced by sea ice loss spreads into the midlatitudes by eddy advection. Although opposing effects of thermodynamical warming and dynamical cooling are found robustly across different models or different sea ice perturbations, their net effect varies in sign and magnitude across the models, resulting in diverse model temperature responses over Eurasia. The contributions from both tropospheric dynamics and thermodynamics show substantial intermodel spread. Although some of this spread in the Eurasian winter temperature response to sea ice loss may stem from model uncertainty, even with several hundred ensemble members, it is challenging to isolate model differences in the forced response from internal variability.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Zheng, czheng@ldeo.columbia.edu

Abstract

Cold winters over Eurasia often coincide with warm winters in the Arctic, which has become known as the “warm Arctic–cold Eurasia” pattern. The extent to which this observed correlation is indicative of a causal response to sea ice loss is debated. Here, using large multimodel ensembles of coordinated experiments, we find that the Eurasian temperature response to Arctic sea ice loss is weak compared to internal variability and is not robust across climate models. We show that Eurasian cooling is driven by tropospheric and stratospheric circulation changes in response to sea ice loss but is counteracted by tropospheric thermodynamical warming, as the local warming induced by sea ice loss spreads into the midlatitudes by eddy advection. Although opposing effects of thermodynamical warming and dynamical cooling are found robustly across different models or different sea ice perturbations, their net effect varies in sign and magnitude across the models, resulting in diverse model temperature responses over Eurasia. The contributions from both tropospheric dynamics and thermodynamics show substantial intermodel spread. Although some of this spread in the Eurasian winter temperature response to sea ice loss may stem from model uncertainty, even with several hundred ensemble members, it is challenging to isolate model differences in the forced response from internal variability.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Cheng Zheng, czheng@ldeo.columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 5.9448 MB)
Save
  • Blackport, R., and P. J. Kushner, 2018: The role of extratropical ocean warming in the coupled climate response to Arctic sea ice loss. J. Climate, 31, 91939206, https://doi.org/10.1175/JCLI-D-18-0192.1.

    • Search Google Scholar
    • Export Citation
  • Blackport, R., J. A. Screen, K. van der Wiel, and R. Bintanja, 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697704, https://doi.org/10.1038/s41558-019-0551-4.

    • Search Google Scholar
    • Export Citation
  • Chen, H. W., F. Zhang, and R. B. Alley, 2016: The robustness of midlatitude weather pattern changes due to Arctic sea ice loss. J. Climate, 29, 78317849, https://doi.org/10.1175/JCLI-D-16-0167.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., D. Luo, Y. Wu, E. Dunn-Sigouin, and J. Lu, 2021: Nonlinear response of atmospheric blocking to early winter Barents–Kara Seas warming: An idealized model study. J. Climate, 34, 23672383, https://doi.org/10.1175/JCLI-D-19-0720.1.

    • Search Google Scholar
    • Export Citation
  • Chripko, S., R. Msadek, E. Sanchez-Gomez, L. Terray, L. Bessières, and M.-P. Moine, 2021: Impact of reduced Arctic sea ice on Northern Hemisphere climate and weather in autumn and winter. J. Climate, 34, 58475867, https://doi.org/10.1175/JCLI-D-20-0515.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, and A. Kumar, 2018: Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2. Adv. Atmos. Sci., 35, 1426, https://doi.org/10.1007/s00376-017-6294-0.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., L. Sun, R. A. Tomas, and J. Screen, 2016: Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss? Geophys. Res. Lett., 43, 21492157, https://doi.org/10.1002/2016GL067792.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., and Coauthors, 2019: The Whole Atmosphere Community Climate Model version 6 (WACCM6). J. Geophys. Res. Atmos., 124, 12 38012 403, https://doi.org/10.1029/2019JD030943.

    • Search Google Scholar
    • Export Citation
  • He, S., X. Xu, T. Furevik, and Y. Gao, 2020: Eurasia cooling linked to the vertical distribution of Arctic warming. Geophys. Res. Lett., 47, e2020GL087212, https://doi.org/10.1029/2020GL087212.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., and Coauthors, 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep., 7, 40051, https://doi.org/10.1038/srep40051.

    • Search Google Scholar
    • Export Citation
  • Labe, Z., Y. Peings, and G. Magnusdottir, 2020: Warm Arctic, cold Siberia pattern: Role of full Arctic amplification versus sea ice loss alone. Geophys. Res. Lett., 47, e2020GL088583, https://doi.org/10.1029/2020GL088583.

    • Search Google Scholar
    • Export Citation
  • Labe, Z., 2020: The effects of Arctic sea-ice thickness loss and stratospheric variability on mid-latitude cold spells. Ph.D. dissertation, University of California, 158 pp., https://escholarship.org/uc/item/778982rr.

  • Matsumura, S., and Y. Kosaka, 2019: Arctic-Eurasian climate linkage induced by tropical ocean variability. Nat. Commun., 10, 3441, https://doi.org/10.1038/s41467-019-11359-7.

    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838842, https://doi.org/10.1038/ngeo2820.

    • Search Google Scholar
    • Export Citation
  • McKenna, C. M., T. J. Bracegirdle, E. F. Shuckburgh, P. H. Haynes, and M. M. Joshi, 2018: Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts. Geophys. Res. Lett., 45, 945954, https://doi.org/10.1002/2017GL076433.

    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, Y. Tomikawa, and J. Ukita, 2016: The stratospheric pathway for Arctic impacts on midlatitude climate. Geophys. Res. Lett., 43, 34943501, https://doi.org/10.1002/2016GL068330.

    • Search Google Scholar
    • Export Citation
  • Ogawa, F., and Coauthors, 2018: Evaluating impacts of recent Arctic sea ice loss on the Northern Hemisphere winter climate change. Geophys. Res. Lett., 45, 32553263, https://doi.org/10.1002/2017GL076502.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic sea. Polar Res., 30, 15787, https://doi.org/10.3402/polar.v30i0.15787.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., Z. M. Labe, and G. Magnusdottir, 2021: Are 100 ensemble members enough to capture the remote atmospheric response to +2°C Arctic sea ice loss? J. Climate, 34, 37513769, https://doi.org/10.1175/JCLI-D-20-0613.1.

    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017a: Simulated atmospheric response to regional and pan-Arctic sea-ice loss. J. Climate, 30, 39453962, https://doi.org/10.1175/JCLI-D-16-0197.1.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2017b: The missing northern European winter cooling response to Arctic sea ice loss. Nat. Commun., 8, 14603, https://doi.org/10.1038/ncomms14603.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and R. Blackport, 2019: How robust is the atmospheric response to projected Arctic sea-ice loss across climate models? Geophys. Res. Lett., 46, 11 40611 415, https://doi.org/10.1029/2019GL084936.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nat. Geosci., 11, 155163, https://doi.org/10.1038/s41561-018-0059-y.

    • Search Google Scholar
    • Export Citation
  • Semenov, V. A., and M. Latif, 2015: Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environ. Res. Lett., 10, 054020, https://doi.org/10.1088/1748-9326/10/5/054020.

    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., D. M. Lawrence, S. C. Swenson, C. Hannay, K. A. McKinnon, and J. E. Truesdale, 2022: Improvements in wintertime surface temperature variability in the Community Earth System Model version 2 (CESM2) related to the representation of snow density. J. Adv. Model. Earth Syst., 14, e2021MS002880, https://doi.org/10.1029/2021MS002880.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., N. J. Dunstone, A. A. Scaife, E. K. Fiedler, D. Copsey, and S. C. Hardiman, 2017: Atmospheric response to Arctic and Antarctic sea ice: The importance of ocean–atmosphere coupling and the background state. J. Climate, 30, 45474565, https://doi.org/10.1175/JCLI-D-16-0564.1.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev., 12, 11391164, https://doi.org/10.5194/gmd-12-1139-2019.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2022: Robust but weak winter atmospheric circulation response to future Arctic sea ice loss. Nat. Commun., 13, 727, https://doi.org/10.1038/s41467-022-28283-y.

    • Search Google Scholar
    • Export Citation
  • Smith, K. L., R. R. Neely, D. R. Marsh, and L. M. Polvani, 2014: The Specified Chemistry Whole Atmosphere Community Climate Model (SC-WACCM). J. Adv. Model. Earth Syst., 6, 883901, https://doi.org/10.1002/2014MS000346.

    • Search Google Scholar
    • Export Citation
  • Streffing, J., T. Semmler, L. Zampieri, and T. Jung, 2021: Response of Northern Hemisphere weather and climate to Arctic sea ice decline: Resolution independence in Polar Amplification Model Intercomparison Project (PAMIP) simulations. J. Climate, 34, 84458457, https://doi.org/10.1175/JCLI-D-19-1005.1.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 78247845, https://doi.org/10.1175/JCLI-D-15-0169.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Search Google Scholar
    • Export Citation
  • Sun, L., M. Alexander, and C. Deser, 2018: Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Climate, 31, 78237843, https://doi.org/10.1175/JCLI-D-18-0134.1.

    • Search Google Scholar
    • Export Citation
  • Sun, L., C. Deser, I. Simpson, and M. Sigmond, 2022: Uncertainty in the winter tropospheric response to Arctic sea ice loss: The role of stratospheric polar vortex internal variability. J. Climate, 35, 31093130, https://doi.org/10.1175/JCLI-D-21-0543.1.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global Planet. Change, 117, 5263, https://doi.org/10.1016/j.gloplacha.2014.03.003.

    • Search Google Scholar
    • Export Citation
  • Warner, J. L., J. A. Screen, and A. A. Scaife, 2020: Links between Barents-Kara sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys. Res. Lett., 47, e2019GL085679, https://doi.org/10.1029/2019GL085679.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Wu, Y., and K. L. Smith, 2016: Response of Northern Hemisphere midlatitude circulation to Arctic amplification in a simple atmospheric general circulation model. J. Climate, 29, 20412058, https://doi.org/10.1175/JCLI-D-15-0602.1.

    • Search Google Scholar
    • Export Citation
  • Xu, M., W. Tian, J. Zhang, J. A. Screen, J. Huang, K. Qie, and T. Wang, 2021: Distinct tropospheric and stratospheric mechanisms linking historical Barents-Kara sea-ice loss and late winter Eurasian temperature variability. Geophys. Res. Lett., 48, e2021GL095262, https://doi.org/10.1029/2021GL095262.

    • Search Google Scholar
    • Export Citation
  • Xu, X., S. He, Y. Gao, T. Furevik, H. Wang, F. Li, and F. Ogawa, 2019: Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dyn., 53, 39713983, https://doi.org/10.1007/s00382-019-04764-7.

    • Search Google Scholar
    • Export Citation
  • Zhang, P. F., Y. T. Wu, I. R. Simpson, K. L. Smith, X. D. Zhang, B. De, and P. Callaghan, 2018a: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea-ice loss. Sci. Adv., 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.

    • Search Google Scholar
    • Export Citation
  • Zhang, P. F., Y. T. Wu, and K. L. Smith, 2018b: Prolonged effect of the stratospheric pathway in linking Barents-Kara Sea sea ice variability to the midlatitude circulation in a simplified model. Climate Dyn., 50, 527539, https://doi.org/10.1007/s00382-017-3624-y.

    • Search Google Scholar
    • Export Citation
  • Zhang, P. F., Y. T. Wu, G. Chen, and Y. Yu, 2020: North American cold events following sudden stratospheric warming in the presence of low Barents–Kara Sea sea ice. Environ. Res. Lett., 15, 124017, https://doi.org/10.1088/1748-9326/abc215.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and J. A. Screen, 2021: Diverse Eurasian winter temperature responses to Barents-Kara sea-ice anomalies of different magnitudes and seasonality. Geophys. Res. Lett., 48, e2021GL092726, https://doi.org/10.1029/2021GL092726.

    • Search Google Scholar
    • Export Citation
  • Zhong, L., L. Hua, and D. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents–Kara Seas. J. Climate, 31, 19631982, https://doi.org/10.1175/JCLI-D-17-0203.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 573 573 25
Full Text Views 235 235 26
PDF Downloads 239 239 25