How Have Hydrological Extremes Changed over the Past 20 Years?

Bailing Li aNASA Goddard Space Flight Center, Greenbelt, Maryland
bESSIC University of Maryland, College Park, Maryland

Search for other papers by Bailing Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7991-219X
and
Matthew Rodell aNASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Matthew Rodell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe floods and droughts, including their back-to-back occurrences (weather whiplash), have been increasing in frequency and severity around the world. Improved understanding of systematic changes in hydrological extremes is essential for preparation and adaptation. In this study, we identified and quantified extreme wet and dry events globally by applying a clustering algorithm to terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (FO). The most intense events, ranked using an intensity metric, often reflect impacts of large-scale oceanic oscillations such as El Niño–Southern Oscillation and consequences of climate change. The severity of both wet and dry events, represented by standardized TWS anomalies, increased significantly in most cases, likely associated with intensification of wet and dry weather regimes in a warmer world, and consequently, exhibited strongest correlation with global temperature. In the Dry climate, the number of wet events decreased while the number of dry events increased significantly, suggesting a drying trend that may be attributed to climate variability and possible increases in irrigation and reliance on groundwater. In the Continental climate where temperature has risen faster than global average, dry events increased significantly. Characteristics of extreme events often showed strong correlations with global temperature, especially when averaged over all climates. These results suggest changes in hydrological extremes and underscore the importance of quantifying total water storage changes when studying hydrological extremes. Extending the GRACE/FO record, which spans 2002 to the present, is essential to continuously tracking changes in TWS and hydrological extremes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bailing Li, bailing.li@nasa.gov

Abstract

Severe floods and droughts, including their back-to-back occurrences (weather whiplash), have been increasing in frequency and severity around the world. Improved understanding of systematic changes in hydrological extremes is essential for preparation and adaptation. In this study, we identified and quantified extreme wet and dry events globally by applying a clustering algorithm to terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (FO). The most intense events, ranked using an intensity metric, often reflect impacts of large-scale oceanic oscillations such as El Niño–Southern Oscillation and consequences of climate change. The severity of both wet and dry events, represented by standardized TWS anomalies, increased significantly in most cases, likely associated with intensification of wet and dry weather regimes in a warmer world, and consequently, exhibited strongest correlation with global temperature. In the Dry climate, the number of wet events decreased while the number of dry events increased significantly, suggesting a drying trend that may be attributed to climate variability and possible increases in irrigation and reliance on groundwater. In the Continental climate where temperature has risen faster than global average, dry events increased significantly. Characteristics of extreme events often showed strong correlations with global temperature, especially when averaged over all climates. These results suggest changes in hydrological extremes and underscore the importance of quantifying total water storage changes when studying hydrological extremes. Extending the GRACE/FO record, which spans 2002 to the present, is essential to continuously tracking changes in TWS and hydrological extremes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bailing Li, bailing.li@nasa.gov

Supplementary Materials

    • Supplemental Materials (PDF 5.8906 MB)
Save
  • ABM, 2004: Severe tropical cyclone Monty. Australian Bureau of Meteorology, accessed 23 August 2023, http://www.bom.gov.au/cyclone/history/monty.shtml.

  • ABM, 2006: Australia’s hottest year on record. Australian Bureau of Meteorology accessed 18 August 2023, http://www.bom.gov.au/announcements/media_releases/climate/change/20060104.shtml.

  • ABM, 2015: Recent rainfall, drought and southern Australia’s long-term rainfall decline. Australian Bureau of Meteorology, accessed 18 August 2023, http://www.bom.gov.au/climate/updates/articles/a010-southern-rainfall-decline.shtml.

  • AGCanada, 2019: Prairie dryness concerns to persist. Accessed 17 August 2023, https://www.agcanada.com/daily/prairie-dryness-concerns-to-persist.

  • Ahmed, R., T. Prowse, Y. Dibike, B. Bonsal, and H. O’Neil, 2020: Recent trends in freshwater influx to the Arctic Ocean from four major Arctic-draining rivers. Water, 12, 1189, https://doi.org/10.3390/w12041189.

    • Search Google Scholar
    • Export Citation
  • Akinsanola, A. A., and W. Zhou, 2020: Understanding the variability of West African summer monsoon rainfall: Contrasting tropospheric features and monsoon index. Atmosphere, 11, 309, https://doi.org/10.3390/atmos11030309.

    • Search Google Scholar
    • Export Citation
  • Aljazeera, 2017: Tropical Cyclone Blanche hits northern Australia. Accessed 18 August 2023, https://www.aljazeera.com/news/2017/3/6/tropical-cyclone-blanche-hits-northern-australia.

  • Andersen, O. B., S. I. Seneviratne, J. Hinderer, and P. Viterbo, 2005: GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys. Res. Lett., 32, L18405, https://doi.org/10.1029/2005GL023574.

    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Search Google Scholar
    • Export Citation
  • Australian Institute for Disaster Resilience, 2012: Queensland and Brisbane 2010/11 floods. Accessed 17 August 2023, https://knowledge.aidr.org.au/resources/flood-queensland-201011/.

  • Behera, S. K., J.-J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 45144530, https://doi.org/10.1175/JCLI3541.1.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., and Coauthors, 2022: Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns. PLOS Climate, 1, e0000029, https://doi.org/10.1371/journal.pclm.0000029.

    • Search Google Scholar
    • Export Citation
  • Berenguer, E., and Coauthors, 2021: Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl. Acad. Sci. USA, 118, e2019377118, https://doi.org/10.1073/pnas.2019377118.

    • Search Google Scholar
    • Export Citation
  • Birant, D., and A. Kut, 2007: ST-DBSCAN: An algorithm for clustering spatial-temporal data. Data Knowl. Eng., 60, 208221, https://doi.org/10.1016/j.datak.2006.01.013.

    • Search Google Scholar
    • Export Citation
  • Blašković, T., 2018: Snowfall of the century: Record-breaking snow and freezing rain wreak havoc across Moscow. The Watchers, accessed 17 November 2023, https://watchers.news/2018/02/04/snowfall-of-the-century-record-breaking-snow-freezing-rain-wreak-havoc-across-moscow/.

  • Blöschl, G., and Coauthors, 2019: Changing climate both increases and decreases European river floods. Nature, 573, 108111, https://doi.org/10.1038/s41586-019-1495-6.

    • Search Google Scholar
    • Export Citation
  • CalMatters, 2023: Is California’s drought over? Here’s what you need to know about rain, snow, reservoirs and drought. CalMatters, accessed 17 November 2023, https://calmatters.org/environment/2023/01/california-drought-snow-rain/.

  • Canadian Drought Monitor, 2019: Canadian Drought Monitor: Conditions as of March 31, 2019. Accessed 17 August 2023, https://svma.sk.ca/wp-content/uploads/2019/12/SVMA_AGRICULTURE-CANADA_Canadian-Drought-Monitor_End-of-March-2019.pdf.

  • Chandanpurkar, H. A., J. T. Reager, J. S. Famiglietti, R. S. Nerem, D. P. Chambers, M.-H. Lo, B. D. Hamlington, and T. H. Syed, 2021: The seasonality of global land and ocean mass and the changing water cycle. Geophys. Res. Lett., 48, e2020GL091248, https://doi.org/10.1029/2020GL091248.

    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, and B. D. Tapley, 2010: The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE. Water Resour. Res., 46, W12526, https://doi.org/10.1029/2010WR009383.

    • Search Google Scholar
    • Export Citation
  • Cherenkova, E. A., N. K. Kononova1, and N. R. Muratova, 2013: Summer drought 2010 in the European Russia. Geogr. Environ. Sustainability, 6, 5566, https://doi.org/10.24057/2071-9388-2013-6-1-81-92.

    • Search Google Scholar
    • Export Citation
  • Ciavarella, A., and Coauthors, 2021: Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change, 166, 9, https://doi.org/10.1007/s10584-021-03052-w.

    • Search Google Scholar
    • Export Citation
  • Cleverly, J., and Coauthors, 2016: The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes. Sci. Rep., 6, 23113, https://doi.org/10.1038/srep23113.

    • Search Google Scholar
    • Export Citation
  • Cui, W., X. Dong, B. Xi, and A. Kennedy, 2017: Evaluation of reanalyzed precipitation variability and trends using the gridded gauge-based analysis over the CONUS. J. Hydrometeor., 18, 22272248, https://doi.org/10.1175/JHM-D-17-0029.1.

    • Search Google Scholar
    • Export Citation
  • Cunha, A. P. M. A., R. C. S. Alvalá, P. Y. Kubota, and R. M. S. P. Vieira, 2015: Impacts of land use and land cover changes on the climate over Northeast Brazil. Atmos. Sci. Lett., 16, 219227, https://doi.org/10.1002/asl2.543.

    • Search Google Scholar
    • Export Citation
  • Cunha, A. P. M. A., and Coauthors, 2019: Extreme drought events over Brazil from 2011 to 2019. Atmosphere, 10, 642, https://doi.org/10.3390/atmos10110642.

    • Search Google Scholar
    • Export Citation
  • Dai, A. G., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Davies, R., 2016a: Uruguay—Over 10,000 remain displaced by floods as further heavy rain hits. Accessed 17 August 2023, http://floodlist.com/america/uruguay-thousands-displaced-floods-april-2016.

  • Davies, R., 2016b: Russia—Spring floods leave 8,000 homes damaged. Accessed 17 August 2023, https://floodlist.com/europe/russia-spring-floods-leave-8000-homes-damaged.

  • Davies, R., 2017: Russia—Hundreds displaced as floods in Far East damage homes and roads. FloodList, accessed 18 August 2023, http://floodlist.com/asia/russia-floods-far-east-august-2017.

  • de Kok, R. J., P. D. A. Kraaijenbrink, O. A. Tuinenburg, P. N. J. Bonekamp, and W. W. Immerzeel, 2019: Snowfall increase counters glacier demise in Kunlun Shan and Karakoram. Cryosphere Discuss., https://doi.org/10.5194/tc-2019-228, preprint.

    • Search Google Scholar
    • Export Citation
  • Douville, H., and Coauthors, 2021: Water cycle changes. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1055–1210, https://doi.org/10.1017/9781009157896.010.

  • Eicker, A., E. Forootan, A. Springer, L. Longuevergne, and J. Kusche, 2016: Does GRACE see the terrestrial water cycle “intensifying”? J. Geophys. Res. Atmos., 121, 733745, https://doi.org/10.1002/2015JD023808.

    • Search Google Scholar
    • Export Citation
  • Espinoza, J., J. A. Marengo, J. Schongart, and J. C. Jimenez, 2022: The new historical flood of 2021 in the Amazon River compared to major floods of the 21st century: Atmospheric features in the context of the intensification of floods. Wea. Climate Extremes, 35, 100406, https://doi.org/10.1016/j.wace.2021.100406.

    • Search Google Scholar
    • Export Citation
  • FloodList, 2019: West Africa—Death toll rises in Niger, homes destroyed in Nigeria, hundreds displaced in Chad. Accessed 17 August 2023, http://floodlist.com/africa/westafrica-floods-nigeria-niger-chad-september-2019.

  • FloodList, 2021: China—20,000 evacuate floods in Heilongjiang. Accessed 17 August 2023, https://floodlist.com/asia/china-floods-heilongjiang-june-2021.

  • Frolova, N. L., and Coauthors, 2017: Hydrological hazards in Russia: Origin, classification, changes and risk assessment. Nat. Hazards, 88, 103131, https://doi.org/10.1007/s11069-016-2632-2.

    • Search Google Scholar
    • Export Citation
  • Gasparini, N. M., and B. Yuill, 2020: High water: Prolonged flooding on the Deltaic Mississippi River. Eos, 101, https://doi.org/10.1029/2020EO141465.

    • Search Google Scholar
    • Export Citation
  • Geotimes, 2005: Drought in the horn of Africa. Accessed 17 August 2023, http://www.geotimes.org/apr05/WebExtra042905.html.

  • Gerdener, H., O. Engels, and J. Kusche, 2020: A framework for deriving drought indicators from the Gravity Recovery and Climate Experiment (GRACE). Hydrol. Earth Syst. Sci., 24, 227248, https://doi.org/10.5194/hess-24-227-2020.

    • Search Google Scholar
    • Export Citation
  • Getirana, A., 2016: Extreme water deficit in Brazil detected from space. J. Hydrometeor., 17, 591599, https://doi.org/10.1175/JHM-D-15-0096.1.

    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., and Coauthors, 2011: Characterization and summary of the 1999–2005 Canadian Prairie drought. Atmos.–Ocean, 49, 421452, https://doi.org/10.1080/07055900.2011.626757.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., D. Polzin, and C. Mutai, 2007: Diagnosing the 2005 drought in equatorial East Africa. J. Climate, 20, 46284637, https://doi.org/10.1175/JCLI4238.1.

    • Search Google Scholar
    • Export Citation
  • He, X., and J. Sheffield, 2020: Lagged compound occurrence of droughts and pluvials globally over the past seven decades. Geophys. Res. Lett., 47, e2020GL087924, https://doi.org/10.1029/2020GL087924.

    • Search Google Scholar
    • Export Citation
  • He, X., M. Pan, Z. Wei, E. F. Wood, and J. Sheffield, 2020: A global drought and flood catalogue from 1950 to 2016. Bull. Amer. Meteor. Soc., 101, E508E535, https://doi.org/10.1175/BAMS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
  • Heberger, M., 2012: Australia’s millennium drought: Impacts and responses. The World’s Water, Island Press, 97–125, https://doi.org/10.5822/978-1-59726-228-6_5.

  • Hodgkins, G. A., and Coauthors, 2017: Climate-driven variability in the occurrence of major floods across North America and Europe. J. Hydrol., 552, 704717, https://doi.org/10.1016/j.jhydrol.2017.07.027.

    • Search Google Scholar
    • Export Citation
  • Hu, G., and C. L. E. Franzke, 2020: Evaluation of daily precipitation extremes in reanalysis and gridded observation-based data sets over Germany. Geophys. Res. Lett., 47, e2020GL089624, https://doi.org/10.1029/2020GL089624.

    • Search Google Scholar
    • Export Citation
  • Huang, X., and D. L. Swain, 2022: Climate change is increasing the risk of a California megaflood. Sci. Adv., 8, eabq0995, https://doi.org/10.1126/sciadv.abq0995.

    • Search Google Scholar
    • Export Citation
  • Jensen, A., 2011: South Australian River Murray floods 2010–2011 breathe life back into river ecosystem! Accessed 18 August 2023, https://blogs.adelaide.edu.au/environment/2011/04/05/south-australian-river-murray-floods-2010-2011-breathe-life-back-into-river-ecosystem-guest-blogger-dr-anne-jensen/.

  • Jiménez-Muñoz, J. C., C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. van der Schrier, 2016: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep., 6, 33130, https://doi.org/10.1038/srep33130.

    • Search Google Scholar
    • Export Citation
  • Kato, H., M. Rodell, F. Beyrich, H. Cleugh, E. van Gorsel, H. Liu, and T. P. Meyers, 2007: Sensitivity of land surface simulations to model physics, land characteristics, and forcings, at four CEOP sites. J. Meteor. Soc. Japan, 85A, 187204, https://doi.org/10.2151/jmsj.85A.187.

    • Search Google Scholar
    • Export Citation
  • Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu, 2013: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. USA, 110, 13 05513 060, https://doi.org/10.1073/pnas.1305069110.

    • Search Google Scholar
    • Export Citation
  • Konapala, G., A. K. Mishra, Y. Wada, and M. E. Mann, 2020: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun., 11, 3044, https://doi.org/10.1038/s41467-020-16757-w.

    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Climate Change, 10, 4853, https://doi.org/10.1038/s41558-019-0637-z.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 80924 822, https://doi.org/10.1029/2000JD900327.

    • Search Google Scholar
    • Export Citation
  • Kumar, S. V., and Coauthors, 2006: Land information system: An interoperable framework for high resolution land surface modeling. Environ. Modell. Software, 21, 14021415, https://doi.org/10.1016/j.envsoft.2005.07.004.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. C. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., J. O. Dickey, and A. Güntner, 2010: Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009. J. Geophys. Res., 115, D23115, https://doi.org/10.1029/2010JD014584.

    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and Coauthors, 2020: Extending the global mass change data record: GRACE follow-on instrument and science data performance. Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020GL088306.

    • Search Google Scholar
    • Export Citation
  • Leblanc, M., P. Tregoning, G. Ramillien, S. O. Tweed, and A. Fakes, 2009: Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour. Res., 45, W04408, https://doi.org/10.1029/2008WR007333.

    • Search Google Scholar
    • Export Citation
  • Lehner, F., E. R. Wahl, A. W. Wood, D. B. Blatchford, and D. Llewellyn, 2017: Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett., 44, 41244133, https://doi.org/10.1002/2017GL073253.

    • Search Google Scholar
    • Export Citation
  • Levinson, D. H., and M. J. Salinger, 2005: [The tropics] South Pacific and Australia region tropical cyclones [in “State of the Climate in 2004”]. Bull. Amer. Meteor. Soc., 86 (6), S35, https://doi.org/10.1175/1520-0477-86.6s.1.

    • Search Google Scholar
    • Export Citation
  • Li, B., and Coauthors, 2019: Global GRACE data assimilation for groundwater and drought monitoring: Advances and challenges. Water Resour. Res., 55, 75647586, https://doi.org/10.1029/2018WR024618.

    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., and S. M. Vicente-Serrano, 2008: Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: A multitemporal-scale approach. J. Climate, 21, 12201243, https://doi.org/10.1175/2007JCLI1739.1.

    • Search Google Scholar
    • Export Citation
  • Lorrey, A. M., S. McGree, J. A. Renwick, and S. Hugony, 2012: [Tropics] Southwest Pacific Basin [in “State of the Climate in 2011”]. Bull. Amer. Meteor. Soc., 93 (7), S112, https://doi.org/10.1175/2012BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., L. M. Alves, R. C. S. Alvala, A. P. Cunha, S. Brito, and O. L. L. Moraes, 2017: Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. Ann. Acad. Bras. Cienc., 90, 19731985, https://doi.org/10.1590/0001-3765201720170206.

    • Search Google Scholar
    • Export Citation
  • Martin, J. T., and Coauthors, 2020: Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl. Acad. Sci. USA, 117, 11 32811 336, https://doi.org/10.1073/pnas.1916208117.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., and L. Goddard, 2001: Probabilistic precipitation anomalies associated with ENSO. Bull. Amer. Meteor. Soc., 82, 619638, https://doi.org/10.1175/1520-0477(2001)082<0619:PPAAWE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Search Google Scholar
    • Export Citation
  • McClelland, J. W., S. J. Déry, B. J. Peterson, R. M. Holmes, and E. F. Wood, 2006: A pan-Arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett., 33, L06715, https://doi.org/10.1029/2006GL025753.

    • Search Google Scholar
    • Export Citation
  • Milly, P. C. D., and K. A. Dunne, 2020: Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science, 367, 12521255, https://doi.org/10.1126/science.aay9187.

    • Search Google Scholar
    • Export Citation
  • Miyan, M. A., 2015: Droughts in Asian least developed countries: Vulnerability and sustainability. Wea. Climate Extremes, 7, 823, https://doi.org/10.1016/j.wace.2014.06.003.

    • Search Google Scholar
    • Export Citation
  • Morales, M. S., and Coauthors, 2020: Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl. Acad. Sci. USA, 117, 16 81616 823, https://doi.org/10.1073/pnas.2002411117.

    • Search Google Scholar
    • Export Citation
  • NASA Earth Observatory/Event 11787, 2003: Forest fires in eastern Russia. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/11787/forest-fires-in-eastern-russia.

  • NASA Earth Observatory/Event 15849, 2005: Food shortages in southeast Africa. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/15849/food-shortages-in-southeast-africa.

  • NASA Earth Observatory/Event 49779, 2011: Flooding in western Australia. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/49779/flooding-in-western-australia.

  • NASA Earth Observatory/Event 76680, 2011: Lake Eyre floods, South Australia. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/76680/lake-eyre-floods-south-australia.

  • NASA Earth Observatory/Event 77712, 2013: Fires in Siberia. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/event/77712/fires-in-siberia.

  • NASA Earth Observatory/Event 146015, 2019: Drought threatens millions in southern Africa. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/146015/drought-threatens-millions-in-southern-africa.

  • NASA Earth Observatory/Event 146888, 2020: Signs of drought in European groundwater. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/146888/signs-of-drought-in-european-groundwater.

  • NASA Earth Observatory/Event 148468, 2021: Brazil battered by drought. Accessed 17 August 2023, https://earthobservatory.nasa.gov/images/148468/brazil-battered-by-drought.

  • New Humanitarian, 2019: In rural Pakistan, ‘worst drought in years’ drives displacement and hunger. Accessed 17 August 2023, https://www.thenewhumanitarian.org/news/2019/02/06/rural-pakistan-worst-drought-years-drives-displacement-and-hunger.

  • Ng, B., W. Cai, T. Cowan, and D. Bi, 2018: Influence of internal climate variability on Indian Ocean dipole properties. Sci. Rep., 8, 13500, https://doi.org/10.1038/s41598-018-31842-3.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., and J. C. Selato, 2000: The influence of La Niña on African rainfall. Int. J. Climatol., 20, 17611776, https://doi.org/10.1002/1097-0088(20001130)20:14<1761::AID-JOC580>3.0.CO;2-W.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2018: Alaska’s 2018 early fall extremes. Accessed 17 August 2023, https://www.climate.gov/news-features/event-tracker/alaska%E2%80%99s-2018-early-fall-extremes.

  • NOAA, 2019a: Spring outlook: Historic, widespread flooding to continue through May. Accessed 17 August 2023, https://www.noaa.gov/media-release/spring-outlook-historic-widespread-flooding-to-continue-through-may.

  • NOAA, 2019b: Monthly National Climate Report for Annual 2019. Accessed 17 August 2023, https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/201913.

  • NOAA, 2020: Spring flood outlook (updated March 26, 2020). Accessed 17 August 2023, https://www.weather.gov/dvn/2020_springfloodoutlook.

  • NOAA, 2021: Monthly National Climate Report for Annual 2020. Accessed 17 August 2023, https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/202013.

  • Pascolini-Campbell, M., J. T. Reager, H. A. Chandanpurkar, and M. Rodell, 2021: A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature, 593, 543547, https://doi.org/10.1038/s41586-021-03503-5.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173, https://doi.org/10.1126/science.1077445.

    • Search Google Scholar
    • Export Citation
  • Phys.org, 2019: At least 265 dead in floods, landslides as rains batter East Africa. Accessed 17 August 2023, https://phys.org/news/2019-12-dead-landslides-batter-east-africa.html.

  • Reager, J. T., and J. S. Famiglietti, 2009: Global terrestrial water storage capacity and flood potential using GRACE. Geophys. Res. Lett., 36, L23402, https://doi.org/10.1029/2009GL040826.

    • Search Google Scholar
    • Export Citation
  • Reager, J. T., B. S. Thomas, and J. S. Famiglietti, 2014: River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat. Geosci., 7, 588592, https://doi.org/10.1038/ngeo2203.

    • Search Google Scholar
    • Export Citation
  • Relief Web, 2017: Russian Federation: Floods. Accessed 17 August 2023, https://reliefweb.int/disaster/fl-2017-000052-rus.

  • Rodell, M., and B. Li, 2023: Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water, 1, 241248, https://doi.org/10.1038/s44221-023-00040-5.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, and M.-H. Lo, 2018: Emerging trends in global freshwater availability. Nature, 557, 651659, https://doi.org/10.1038/s41586-018-0123-1.

    • Search Google Scholar
    • Export Citation
  • Rowlands, D. D., S. B. Luthcke, S. M. Klosko, F. G. R. Lemoine, D. S. Chinn, J. J. McCarthy, C. M. Cox, and O. B. Anderson, 2005: Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett., 32, L04310, https://doi.org/10.1029/2004GL021908.

    • Search Google Scholar
    • Export Citation
  • Santé, N., Y. A. N’Go, G. E. Soro, N. H. Meledje, and B. T. A. Goula, 2019: Characterization of meteorological droughts occurrences in Côte d’Ivoire: Case of the Sassandra Watershed. Climate, 7, 60, https://doi.org/10.3390/cli7040060.

    • Search Google Scholar
    • Export Citation
  • Save, H., S. Bettadpur, and B. D. Tapley, 2016: High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth, 121, 75477569, https://doi.org/10.1002/2016JB013007.

    • Search Google Scholar
    • Export Citation
  • Shah, D., and V. Mishra, 2021: Strong influence of changes in terrestrial water storage on flood potential in India. J. Geophys. Res. Atmos., 126, e2020JD033566, https://doi.org/10.1029/2020JD033566.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., K. M. Andreadis, E. F. Wood, and D. P. Lettenmaier, 2009: Global and continental drought in the second half of the twentieth century: Severity–area–duration analysis and temporal variability of large-scale events. J. Climate, 22, 19621981, https://doi.org/10.1175/2008JCLI2722.1.

    • Search Google Scholar
    • Export Citation
  • Sherstyukov, B. G., and A. B. Sherstyukov, 2014: Assessment of increase in forest fire risk in Russia till the late 21st century based on scenario experiments with fifth-generation climate models. Russ. Meteor. Hydrol., 39, 292301, https://doi.org/10.3103/S1068373914050021.

    • Search Google Scholar
    • Export Citation
  • Shvidenko, A. Z., and D. G. Schepaschenko, 2013: Climate change and wildfires in Russia. Contemp. Probl. Ecol., 6, 683692, https://doi.org/10.1134/S199542551307010X.

    • Search Google Scholar
    • Export Citation
  • Singh, A., J. T. Reager, and A. Behrangi, 2021: Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit. Hydrol. Earth Syst. Sci., 25, 511526, https://doi.org/10.5194/hess-25-511-2021.

    • Search Google Scholar
    • Export Citation
  • Spinoni, J., G. Naumannb, J. V. Vogta, and P. Barbos, 2015: The biggest drought events in Europe from 1950 to 2012. J. Hydrol., 3, 509524, https://doi.org/10.1016/j.ejrh.2015.01.001.

    • Search Google Scholar
    • Export Citation
  • Sternberg, T., 2011: Regional drought has a global impact. Nature, 472, 169, https://doi.org/10.1038/472169d.

  • Stewart, R. E., and Coauthors, 2019: Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada—Part 1: Projected climate and meteorology. Hydrol. Earth Syst. Sci., 23, 34373455, https://doi.org/10.5194/hess-23-3437-2019.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Search Google Scholar
    • Export Citation
  • Swenson, S., P. J.-F. Yeh, J. Wahr, and J. Famiglietti, 2006: A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys. Res. Lett., 33, L16401, https://doi.org/10.1029/2006GL026962.

    • Search Google Scholar
    • Export Citation
  • Tangdamrongsub, N., P. G. Ditmar, S. C. Steele-Dunne, B. C. Gunter, and E. H. Sutanudjaja, 2016: Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens. Environ., 181, 162173, https://doi.org/10.1016/j.rse.2016.03.030.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004: The Gravity Recovery and Climate Experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, https://doi.org/10.1002/2014GL059323.

    • Search Google Scholar
    • Export Citation
  • Thomas, B. F., J. S. Famiglietti, F. W. Landerer, D. N. Wiese, N. P. Molotch, and D. F. Argus, 2017: GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ., 198, 384392, https://doi.org/10.1016/j.rse.2017.06.026.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.‐L., and J. Marshall, 2020: Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans, 125, e2018JC014378, https://doi.org/10.1029/2018JC014378.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2007: Observations: Surface and atmospheric climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 235–336.

  • Trewin, B. C., 2011: [Tropics] Australian region basin [in “State of the Climate in 2010”]. Bull. Amer. Meteor. Soc., 92, S130, https://doi.org/10.1175/1520-0477-92.6.S1.

    • Search Google Scholar
    • Export Citation
  • Trouet, V., F. Babst, and M. Meko, 2018: Recent enhanced high-summer North Atlantic jet variability emerges from three-century context. Nat. Commun., 9, 180, https://doi.org/10.1038/s41467-017-02699-3.

    • Search Google Scholar
    • Export Citation
  • USDA, 2012: Russian wheat prospects continue to deteriorate. Accessed 17 August 2012, https://ipad.fas.usda.gov/highlights/2012/08/Russia_15aug2012/.

  • USGCRP, 2018: Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment. Vol. II, U.S. Global Change Research Program, 1515 pp.

  • van Dijk, A. I. J. M., H. E. Beck, R. S. Crosbie, R. A. M. de Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney, 2013: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, 10401057, https://doi.org/10.1002/wrcr.20123.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., J. Tong, T. Zhang, and J. S. Kimball, 2012: Increasing subsurface water storage in discontinuous permafrost areas of the Lena River basin, Eurasia, detected from GRACE. Geophys. Res. Lett., 39, L09403, https://doi.org/10.1029/2012GL051623.

    • Search Google Scholar
    • Export Citation
  • Views and News from Norway, 2018: Flash floods sweep through valleys. Accessed 16 November 2023, https://www.newsinenglish.no/2018/10/14/flash-floods-sweeping-through-valleys/.

  • Vischel, T., and Coauthors, 2019: Precipitation extremes in the West African Sahel: Recent evolution and physical mechanisms. Tropical Extremes: Natural Variability and Trends, Elsevier, 95–138, https://doi.org/10.1016/B978-0-12-809248-4.00004-2.

  • Wainwright, C. M., D. L. Finney, M. Kilavi, E. Black, and J. H. Marsham, 2020: Extreme rainfall in East Africa, October 2019–January 2020 and context under future climate change. Weather, 76, 2631, https://doi.org/10.1002/wea.3824.