Decadal Change in Cold Surges over the South China Sea

Bo Pang aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Bo Pang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3502-9797
,
Riyu Lu aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
,
A. Scaife Adam cMet Office Hadley Centre, Met Office, Exeter, United Kingdom
dCollege of Engineering, Mathematics and Physical Sciences, Exeter University, Exeter, United Kingdom

Search for other papers by A. Scaife Adam in
Current site
Google Scholar
PubMed
Close
, and
Rongcai Ren aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
eKey Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Rongcai Ren in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study identifies that cold surges over the South China Sea (SCS) have experienced a significant change on decadal time scales. The results indicate that cold surges occur more frequently after the early 2000s than before and are at least partially explained by changes in circulation patterns. Both the negative phase of the Scandinavian (SCA) pattern and the cold phase of the interdecadal Pacific oscillation (IPO) can induce increased cold surges and the IPO effect dominates in recent decades. When the IPO shifts to its cold phase, low-level cyclones are induced over the western North Pacific through a Gill response. The northeasterlies along the northwest flank of the cyclones further lead to intensified cold surges over the SCS. The above processes can be reproduced in coupled models, suggesting a robust connection between the IPO and cold surges. The present findings highlight the role of tropical forcing and bring insight into understanding of the future climate variability and change over East Asia during boreal winter.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Pang, pangbo@mail.iap.ac.cn

Abstract

This study identifies that cold surges over the South China Sea (SCS) have experienced a significant change on decadal time scales. The results indicate that cold surges occur more frequently after the early 2000s than before and are at least partially explained by changes in circulation patterns. Both the negative phase of the Scandinavian (SCA) pattern and the cold phase of the interdecadal Pacific oscillation (IPO) can induce increased cold surges and the IPO effect dominates in recent decades. When the IPO shifts to its cold phase, low-level cyclones are induced over the western North Pacific through a Gill response. The northeasterlies along the northwest flank of the cyclones further lead to intensified cold surges over the SCS. The above processes can be reproduced in coupled models, suggesting a robust connection between the IPO and cold surges. The present findings highlight the role of tropical forcing and bring insight into understanding of the future climate variability and change over East Asia during boreal winter.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Pang, pangbo@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.2637 MB)
Save
  • Abdillah, M. R., Y. Kanno, T. Iwasaki, and J. Matsumoto, 2021: Cold surge pathways in East Asia and their tropical impacts. J. Climate, 34, 157170, https://doi.org/10.1175/JCLI-D-20-0552.1.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910, https://doi.org/10.1175/2010MWR3615.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Bladé, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climatic impact. Quart. J. Roy. Meteor. Soc., 133, 21172131, https://doi.org/10.1002/qj.173.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I.-S. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99, 479490, https://doi.org/10.1175/BAMS-D-16-0286.1.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and C. Li, 2004: The East Asian winter monsoon. East Asian Monsoon, C.-P. Chang, Ed., World Scientific, 54–106.

  • Chang, C.-P., J. E. Erickson, and K. M. Lau, 1979: Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part I: Synoptic aspects. Mon. Wea. Rev., 107, 812829, https://doi.org/10.1175/1520-0493(1979)107<0812:NCSANE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., J. E. Millard, and G. T. J. Chen, 1983: Gravitational character of cold surges during winter MONEX. Mon. Wea. Rev., 111, 293307, https://doi.org/10.1175/1520-0493(1983)111<0293:GCOCSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., P. A. Harr, and H.-J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter. Mon. Wea. Rev., 133, 489503, https://doi.org/10.1175/MWR-2868.1.

    • Search Google Scholar
    • Export Citation
  • Chang, C.-P., M.-M. Lu, and S. Wang, 2011: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast, C.-P. Chang, Ed., World Scientific, 99–110.

  • Chen, T.-C., M.-C. Yen, W.-R. Huang, and W. A. Gallus Jr., 2002: An East Asian cold surge: Case study. Mon. Wea. Rev., 130, 22712290, https://doi.org/10.1175/1520-0493(2002)130<2271:AEACSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., J.-D. Tsay, and J. Matsumoto, 2015: Development and formation mechanism of the southeast Asian winter heavy rainfall events around the South China Sea. Part II: Multiple interactions. J. Climate, 28, 14441464, https://doi.org/10.1175/JCLI-D-14-00171.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., R. Wu, and W. Chen, 2014: Distinguishing interannual variations of the northern and southern modes of the East Asian winter monsoon. J. Climate, 27, 835851, https://doi.org/10.1175/JCLI-D-13-00314.1.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., G. N. Kiladis, and P. J. Webster, 1999: The horizontal and vertical structure of East Asian winter monsoon pressure surges. Quart. J. Roy. Meteor. Soc., 125, 2954, https://doi.org/10.1002/qj.49712555304.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1990: Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteor. Atmos. Phys., 44, 281292, https://doi.org/10.1007/BF01026822.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693713, https://doi.org/10.1007/s13351-014-4046-y.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and X. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41, 85708577, https://doi.org/10.1002/2014GL062269.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Farneti, R., 2017: Modelling interdecadal climate variability and the role of the ocean. Wiley Interdiscip. Rev.: Climate Change, 8, e441, https://doi.org/10.1002/wcc.441.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. A. Renwick, M. J. Salinger, and A. B. Mullan, 2002: Relative influences of the Interdecadal Pacific Oscillation and ENSO on the South Pacific convergence zone. Geophys. Res. Lett., 29, 1643, https://doi.org/10.1029/2001GL014201.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Jhun, J.-G., and E.-J. Lee, 2004: A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711726, https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, W., P. Huang, G. Huang, and J. Ying, 2021: Origins of the excessive westward extension of ENSO SST simulated in CMIP5 and CMIP6 models. J. Climate, 34, 28392851, https://doi.org/10.1175/JCLI-D-20-0551.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and C.-P. Chang, 2007: Winter MONEX: A quarter-century and beyond. Bull. Amer. Meteor. Soc., 88, 385388.

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Kucharski, F., and M. K. Joshi, 2017: Influence of tropical South Atlantic sea-surface temperatures on the Indian summer monsoon in CMIP5 models. Quart. J. Roy. Meteor. Soc., 143, 13511363, https://doi.org/10.1002/qj.3009.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., S.-H. Kim, J.-G. Jhun, K.-J. Ha, and Y.-W. Seo, 2013: Robust warming over East Asia during the boreal winter monsoon and its possible causes. Environ. Res. Lett., 8, 034001, https://doi.org/10.1088/1748-9326/8/3/034001.

    • Search Google Scholar
    • Export Citation
  • Lee, T., D. E. Waliser, J.-L. F. Li, F. W. Landerer, and M. M. Gierach, 2013: Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J. Climate, 26, 58105826, https://doi.org/10.1175/JCLI-D-12-00591.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Liguori, G., and E. Di Lorenzo, 2018: Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett., 45, 983991, https://doi.org/10.1002/2017GL076548.

    • Search Google Scholar
    • Export Citation
  • Lim, S. Y., C. Marzin, P. Xavier, C.-P. Chang, and B. Timbal, 2017: Impacts of boreal winter monsoon cold surges and the interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., G. Chen, L. Wang, Y. Kanno, and T. Iwasaki, 2021: Southward cold airmass flux associated with the East Asian winter monsoon: Diversity and impacts. J. Climate, 34, 32393254, https://doi.org/10.1175/JCLI-D-20-0319.1.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-M., and C.-P. Chang, 2009: Unusual late-season cold surges during the 2005 Asian winter monsoon: Roles of Atlantic blocking and the central Asian anticyclone. J. Climate, 22, 52055217, https://doi.org/10.1175/2009JCLI2935.1.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., N. Yuan, T. Dong, and W. Dong, 2023: On the Pacific decadal oscillation simulations in CMIP6 models: A new test-bed from climate network analysis. Asia-Pac. J. Atmos. Sci., 59, 1728, https://doi.org/10.1007/s13143-022-00286-1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, and B. D. Santer, 2009: The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. J. Climate, 22, 780792, https://doi.org/10.1175/2008JCLI2552.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, J. M. Arblaster, J. Fasullo, and K. E. Trenberth, 2013: Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific Oscillation. J. Climate, 26, 72987310, https://doi.org/10.1175/JCLI-D-12-00548.1.

    • Search Google Scholar
    • Export Citation
  • Olaguera, L. M. P., M. E. Caballar, J. C. De Mata, L. A. T. Dagami, J. Matsumoto, and H. Kubota, 2021: Synoptic conditions and potential causes of the extreme heavy rainfall event of January 2009 over Mindanao Island, Philippines. Nat. Hazards, 109, 26012620, https://doi.org/10.1007/s11069-021-04934-z.

    • Search Google Scholar
    • Export Citation
  • Pang, B., and R. Lu, 2019: Two distinct types of extratropical circulation anomalies associated with cold surges over the South China Sea. J. Climate, 32, 50695084, https://doi.org/10.1175/JCLI-D-19-0041.1.

    • Search Google Scholar
    • Export Citation
  • Pang, B., R. Lu, and R. Ren, 2022: Impact of the Scandinavian pattern on long-lived cold surges over the South China Sea. J. Climate, 35, 17731785, https://doi.org/10.1175/JCLI-D-21-0607.1.

    • Search Google Scholar
    • Export Citation
  • Pang, B., A. A. Scaife, R. Lu, R. Ren, and X. Zhao, 2023: Interdecadal variations of the Scandinavian pattern. J. Climate, 36, 32753288, https://doi.org/10.1175/JCLI-D-22-0494.1.

    • Search Google Scholar
    • Export Citation
  • Park, T.-W., J.-H. Jeong, C.-H. Ho, and S.-J. Kim, 2008: Characteristics of atmospheric circulation associated with cold surge occurrences in East Asia: A case study during 2005/06 winter. Adv. Atmos. Sci., 25, 791804, https://doi.org/10.1007/s00376-008-0791-0.

    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Search Google Scholar
    • Export Citation
  • Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.

    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1971: Monsoon Meteorology. International Geophysics Series, Vol. 15, Academic Press, 296 pp.

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Samah, A. A., C. A. Babu, H. Varikoden, P. R. Jayakrishnan, and O. S. Hai, 2016: Thermodynamic and dynamic structure of atmosphere over the east coast of Peninsular Malaysia during the passage of a cold surge. J. Atmos. Sol.-Terr. Phys., 146, 5868, https://doi.org/10.1016/j.jastp.2016.05.011.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., 1998: Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Quart. J. Roy. Meteor. Soc., 124, 2751, https://doi.org/10.1002/qj.49712454503.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, https://doi.org/10.1038/nclimate3058.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y.

    • Search Google Scholar
    • Export Citation
  • Sohn, S.-J., C.-Y. Tam, and C.-K. Park, 2011: Leading modes of East Asian winter climate variability and their predictability: An assessment of the APCC multi-model ensemble. J. Meteor. Soc. Japan, 89, 455474, https://doi.org/10.2151/jmsj.2011-504.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2005: Geographical dependence of upper-level blocking formation associated with intraseasonal amplification of the Siberian high. J. Atmos. Sci., 62, 44414449, https://doi.org/10.1175/JAS3628.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: How well do existing indices measure the strength of the East Asian winter monsoon? Adv. Atmos. Sci., 27, 855870, https://doi.org/10.1007/s00376-009-9094-3.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2014: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull., 59, 430436, https://doi.org/10.1007/s11434-013-0029-0.

    • Search Google Scholar
    • Export Citation
  • Wang, L., R. Huang, L. Gu, W. Chen, and L. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 48604872, https://doi.org/10.1175/2009JCLI2973.1.

    • Search Google Scholar
    • Export Citation
  • Wen, M., S. Yang, A. Kumar, and P. Zhang, 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 11111131, https://doi.org/10.1175/2008MWR2638.1.

    • Search Google Scholar
    • Export Citation
  • Wu, M. C., and J. C. L. Chan, 1995: Surface features of winter monsoon surges over South China. Mon. Wea. Rev., 123, 662680, https://doi.org/10.1175/1520-0493(1995)123<0662:SFOWMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, P., M. Hara, H. Fudeyasu, M. D. Yamanaka, J. Matsumoto, F. Syamsudin, R. Sulistyowati, and Y. S. Djajadihardja, 2007: The impact of trans-equatorial monsoon flow on the formation of repeated torrential rains over Java Island. SOLA, 3, 9396, https://doi.org/10.2151/sola.2007-024.

    • Search Google Scholar
    • Export Citation
  • Xavier, P., and Coauthors, 2020: Seasonal dependence of cold surges and their interaction with the Madden–Julian oscillation over Southeast Asia. J. Climate, 33, 24672482, https://doi.org/10.1175/JCLI-D-19-0048.1.

    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and J. Matsumoto, 2008: Collaborative effects of cold surge and tropical depression–type disturbance on heavy rainfall in central Vietnam. Mon. Wea. Rev., 136, 32753287, https://doi.org/10.1175/2008MWR2456.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., C. Sui, D. H. Lenschow, and M. Zhou, 2017: The relationship between wintertime extreme temperature events north of 60°N and large-scale atmospheric circulations. Int. J. Climatol., 37, 597611, https://doi.org/10.1002/joc.5024.

    • Search Google Scholar
    • Export Citation
  • Zhang, P., Z. Wu, J. Li, and Z. Xiao, 2020: Seasonal prediction of the northern and southern temperature modes of the East Asian winter monsoon: The importance of the Arctic sea ice. Climate Dyn., 54, 35833597, https://doi.org/10.1007/s00382-020-05182-w.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., K. R. Sperber, and J. S. Boyle, 1997a: Climatology and interannual variation of the East Asian winter monsoon: Results from the 1979–95 NCEP/NCAR reanalysis. Mon. Wea. Rev., 125, 26052619, https://doi.org/10.1175/1520-0493(1997)125<2605:CAIVOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997b: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 39783991, https://doi.org/10.1175/2009MWR2952.1.

    • Search Google Scholar
    • Export Citation
  • Zou, M., and Coauthors, 2022: Predictability of the two temperature modes of the East Asian winter monsoon in the NCEP-CFSv2 and MRI-CPSv2 models. Climate Dyn., 59, 32113225, https://doi.org/10.1007/s00382-022-06254-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 638 638 391
Full Text Views 156 156 90
PDF Downloads 182 182 103