Moist Baroclinic Instability along the Subtropical Mei-Yu Front

Guang Yang aDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Guang Yang in
Current site
Google Scholar
PubMed
Close
and
Tim Li aDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
bKey Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environmental Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Differing from classic midlatitude dry baroclinic instability theory, atmospheric motions over the subtropical mei-yu front in boreal summer are dominated by synoptic-scale disturbances coupled with precipitation and moisture under a weaker background vertical shear. This moisture–precipitation–circulation interactive feature, along with a preferred zonal wavelength of about 3400 km and eastward phase propagation, is explained by a moist baroclinic instability theoretical framework. The new framework is an extension of a traditional two-level baroclinic model by considering a prognostic moisture equation, the moisture–precipitation–circulation feedback, and an interactive planetary boundary layer. An eigenvalue analysis of the model shows that the most unstable mode has a preferred zonal wavelength of 3400 km, a westward-tilted vertical structure, and a phase leading of maximum moisture and precipitation anomalies relative to a lower-tropospheric trough, all of which are in good agreement with observations. Both anomalous horizontal and vertical advection processes contribute to the moisture increase. Further sensitivity tests show that the instability and the zonal-scale selection primarily arise from the moisture–convection–circulation feedback, while the vertical shear provides an additional energy source for the perturbation growth. This moist baroclinic instability theory explains well the observed characteristics of the development of synoptic-scale disturbances along the mei-yu front.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu

Abstract

Differing from classic midlatitude dry baroclinic instability theory, atmospheric motions over the subtropical mei-yu front in boreal summer are dominated by synoptic-scale disturbances coupled with precipitation and moisture under a weaker background vertical shear. This moisture–precipitation–circulation interactive feature, along with a preferred zonal wavelength of about 3400 km and eastward phase propagation, is explained by a moist baroclinic instability theoretical framework. The new framework is an extension of a traditional two-level baroclinic model by considering a prognostic moisture equation, the moisture–precipitation–circulation feedback, and an interactive planetary boundary layer. An eigenvalue analysis of the model shows that the most unstable mode has a preferred zonal wavelength of 3400 km, a westward-tilted vertical structure, and a phase leading of maximum moisture and precipitation anomalies relative to a lower-tropospheric trough, all of which are in good agreement with observations. Both anomalous horizontal and vertical advection processes contribute to the moisture increase. Further sensitivity tests show that the instability and the zonal-scale selection primarily arise from the moisture–convection–circulation feedback, while the vertical shear provides an additional energy source for the perturbation growth. This moist baroclinic instability theory explains well the observed characteristics of the development of synoptic-scale disturbances along the mei-yu front.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tim Li, timli@hawaii.edu
Save
  • Adames, Á. F., and Y. Ming, 2018: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 20832106, https://doi.org/10.1175/JAS-D-17-0310.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 667691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air‐mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C., M. Peters, and L. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T. J., and C.-P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (mei-yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942953, https://doi.org/10.1175/1520-0493(1980)108<0942:TSAVBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Choi, J. W., H. D. Kim, and B. Wang, 2020: Interdecadal variation of changma (Korean summer monsoon rainy season) retreat date in Korea. Int. J. Climatol., 40, 13481360, https://doi.org/10.1002/joc.6272.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, https://doi.org/10.1175/JAS-D-15-0254.1.

    • Search Google Scholar
    • Export Citation
  • Day, J. A., I. Fung, and W. Liu, 2018: Changing character of rainfall in eastern China, 1951–2007. Proc. Natl. Acad. Sci. USA, 115, 20162021, https://doi.org/10.1073/pnas.1715386115.

    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., 1992: Summer monsoon rainfall in China. J. Meteor. Soc. Japan, 70, 373396, https://doi.org/10.2151/jmsj1965.70.1B_373.

  • Ding, Y. H., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 2154, https://doi.org/10.2151/jmsj.85B.21.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fantini, M., 1993: A numerical study of two-dimensional moist baroclinic instability. J. Atmos. Sci., 50, 11991210, https://doi.org/10.1175/1520-0469(1993)050<1199:ANSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fowlis, W. W., and R. Hide, 1965: Thermal convection in a rotating annulus of liquid: Effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci., 22, 541558, https://doi.org/10.1175/1520-0469(1965)022<0541:TCIARA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, S. T., Y. S. Zhou, and T. Lei, 2002: Structural features of the meiyu front system. J. Meteor. Res., 16, 195204.

  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://www.ecmwf.int/node/19027.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hu, Y., Y. Deng, Y. Lin, Z. Ming, C. Cui, and X. Dong, 2021: Dynamics of the spatiotemporal morphology of Mei-Yu fronts: An initial survey. Climate Dyn., 56, 27152728, https://doi.org/10.1007/s00382-020-05619-2.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeor., 2, 3650, https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden‐Julian Oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 10931102, https://doi.org/10.1175/JAS3676.1.

    • Search Google Scholar
    • Export Citation
  • Liu, F., and B. Wang, 2017: Effects of moisture feedback in a frictional coupled Kelvin-Rossby wave model and implication in the Madden–Julian Oscillation dynamics. Climate Dyn., 48, 513522, https://doi.org/10.1007/s00382-016-3090-y.

    • Search Google Scholar
    • Export Citation
  • Liu, J. J., Y. H. Ding, and J. H. He, 2003: The structure analysis of a typical meiyu front (in Chinese). Acta Meteor. Sin., 61, 291303.

    • Search Google Scholar
    • Export Citation
  • Mak, M., 1982: On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39, 20282037, https://doi.org/10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nie, J., A. H. Sobel, D. A. Shaevitz, and S. Wang, 2018: Dynamic amplification of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 115, 94679472, https://doi.org/10.1073/pnas.1800357115.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: An initial value problem in the theory of baroclinic instability. Tellus, 16, 1217, https://doi.org/10.3402/tellusa.v16i1.8892.

    • Search Google Scholar
    • Export Citation
  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273286, https://doi.org/10.1111/j.2153-3490.1954.tb01123.x.

    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. S., S. Manabe, and J. L. Holloway, 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727768, https://doi.org/10.1175/1520-0493(1965)093<0727:NRFANL>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and A. Barcilon, 1986: Moist stability of a baroclinic zonal flow with conditionally unstable stratification. J. Atmos. Sci., 43, 705719, https://doi.org/10.1175/1520-0469(1986)043<0705:MSOABZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284, https://doi.org/10.1175/1520-0469(1993)050<0260:ASTAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Lin, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and G. Chen, 2017: A general theoretical framework for understanding essential dynamics of Madden–Julian Oscillation. Climate Dyn., 49, 23092328, https://doi.org/10.1007/s00382-016-3448-1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., A. Barcilon, and L. N. Howard, 1985: Linear dynamics of transient planetary waves in the presence of damping. J. Atmos. Sci., 42, 18931910, https://doi.org/10.1175/1520-0469(1985)042<1893:LDOTPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., S. Clemens, and P. Liu, 2003: Contrasting the Indian and East Asian monsoons: Implications on geologic time scale. Mar. Geol., 201, 521, https://doi.org/10.1016/S0025-3227(03)00196-8.

    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Search Google Scholar
    • Export Citation
  • Yue, C. J., S. W. Shou, K. P. Lin, and X. P. Yao, 2003: Diagnosis of the heavy rain near a meiyu front using the wet Q vector partitioning method. Adv. Atmos. Sci., 20, 3744, https://doi.org/10.1007/BF03342048.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and T. Li, 2019: Basin dependence of the MJO modulating tropical cyclone genesis. Climate Dyn., 52, 60816096, https://doi.org/10.1007/s00382-018-4502-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 402 402 17
Full Text Views 200 200 29
PDF Downloads 218 218 17