Rainfall and Convection in ERA5 and MERRA-2 over the Northern Equatorial Western Pacific during PISTON

Yolande L. Serra aCooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington

Search for other papers by Yolande L. Serra in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3542-1158
,
Steven A. Rutledge bColorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
Kyle Chudler bColorado State University, Fort Collins, Colorado

Search for other papers by Kyle Chudler in
Current site
Google Scholar
PubMed
Close
, and
Chidong Zhang cPacific Marine Environmental Laboratory, NOAA, Seattle, Washington

Search for other papers by Chidong Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study evaluates rainfall, cloudiness, and related fields in the European Centre for Medium-Range Weather Forecasts fifth-generation climate reanalysis (ERA5) and the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), gridded global reanalysis products against observations from the Office of Naval Research’s Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign. We focus on the first PISTON cruise, which took place from August to October 2018 in the northern equatorial western Pacific Ocean. We find biases in the mean surface heat and radiative fluxes consistent with observed biases in high and low cloud fraction and convective activity in the reanalyses. Biases in the high, middle, and low cloud fraction are also consistent with the biases in the thermodynamic profiles, with positive biases in upper-level humidity associated with excessive high cloud in both products, whereas negative biases in humidity above the boundary layer are associated with too few low and middle clouds and increased static stability. ERA5 exhibits a profile that is more top-heavy than that of MERRA-2 during periods dominated by MCSs and stronger upward motion during rainy periods, consistent with higher total rainfall in this product during PISTON. The coarser grid size in MERRA-2 relative to ERA5 and the fact that MERRA-2 did not assimilate PISTON data likely both contribute to the overall larger biases seen in MERRA-2. The observed biases in the reanalyses during PISTON have also been seen in comparisons of these products with satellite data, suggesting that the results of this study are more broadly applicable.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chudler current affiliation: Center for Water Resources, RTI International, Fort Collins, Colorado.

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex - Air-sea interactions from the diurnal to the intraseasonal during the PISTON, MISOBOB, and CAMP2Ex observational campaigns in the tropics; Special Collection.

Corresponding author: Yolande L. Serra, yserra@uw.edu

Abstract

This study evaluates rainfall, cloudiness, and related fields in the European Centre for Medium-Range Weather Forecasts fifth-generation climate reanalysis (ERA5) and the National Aeronautics and Space Administration’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), gridded global reanalysis products against observations from the Office of Naval Research’s Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign. We focus on the first PISTON cruise, which took place from August to October 2018 in the northern equatorial western Pacific Ocean. We find biases in the mean surface heat and radiative fluxes consistent with observed biases in high and low cloud fraction and convective activity in the reanalyses. Biases in the high, middle, and low cloud fraction are also consistent with the biases in the thermodynamic profiles, with positive biases in upper-level humidity associated with excessive high cloud in both products, whereas negative biases in humidity above the boundary layer are associated with too few low and middle clouds and increased static stability. ERA5 exhibits a profile that is more top-heavy than that of MERRA-2 during periods dominated by MCSs and stronger upward motion during rainy periods, consistent with higher total rainfall in this product during PISTON. The coarser grid size in MERRA-2 relative to ERA5 and the fact that MERRA-2 did not assimilate PISTON data likely both contribute to the overall larger biases seen in MERRA-2. The observed biases in the reanalyses during PISTON have also been seen in comparisons of these products with satellite data, suggesting that the results of this study are more broadly applicable.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Chudler current affiliation: Center for Water Resources, RTI International, Fort Collins, Colorado.

This article is included in the Air-sea interactions during PISTON, MISOBOB, and CAMP2Ex - Air-sea interactions from the diurnal to the intraseasonal during the PISTON, MISOBOB, and CAMP2Ex observational campaigns in the tropics; Special Collection.

Corresponding author: Yolande L. Serra, yserra@uw.edu
Save
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., F. R. Robertson, L. Takacs, A. Molod, and D. Mocko, 2017: Atmospheric water balance and variability in the MERRA-2 reanalysis. J. Climate, 30, 11771196, https://doi.org/10.1175/JCLI-D-16-0338.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life‐cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chepfer, H., H. Brogniez, and V. Noel, 2019: Diurnal variations of cloud and relative humidity profiles across the tropics. Sci. Rep., 9, 16045, https://doi.org/10.1038/s41598-019-52437-6.

    • Search Google Scholar
    • Export Citation
  • Chudler, K., and S. A. Rutledge, 2021: The coupling between convective variability and large-scale flow patterns observed during PISTON 2018–19. J. Climate, 34, 71997218, https://doi.org/10.1175/JCLI-D-20-0785.1.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality-controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424, https://doi.org/10.1175/BAMS-85-3-409.

  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, https://doi.org/10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forbes, R. M., A. M. Tompkins, and A. Untch, 2011: A new prognostic bulk microphysics scheme for the IFS. Tech. Memo. 649, 30 pp., https://doi.org/10.21957/bf6vjvxk.

  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • GMAO, 2008a: tavg1_2d_int_Nx: MERRA 2D IAU diagnostic, vertical integrals and budget terms, time average 1-hourly V5.2.0. GES DISC, accessed 18 November 2019, https://doi.org/10.5067/GQC5N9KQ2V08.

  • GMAO, 2008b: tavg1_2d_slv_Nx: MERRA 2D IAU diagnostic, single level meteorology, time average 1-hourly V5.2.0. GES DISC, accessed 18 November 2019, https://doi.org/10.5067/B6DQZQLSFDLH.

  • GMAO, 2015a: MERRA-2 inst3_3d_asm_Np: 3d, 3-hourly, instantaneous, pressure-level, assimilation, assimilated meteorological fields V5.12.4. GES DISC, accessed 21 September 2020, https://doi.org/10.5067/QBZ6MG944HW0.

  • GMAO, 2015b: MERRA-2 tavg3_3d_cld_Np: 3d, 3-hourly, time-averaged, pressure-level, assimilation, cloud diagnostics V5.12.4. GES DISC, accessed 21 September 2019, https://doi.org/10.5067/TX10URJSKT53.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23, 542558, https://doi.org/10.1175/2009JCLI3025.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2018a: ERA5 hourly data on single levels from 1979 to present. C3S and CDS, accessed 3 June 2020, https://doi.org/10.24381/cds.adbb2d47.

  • Hersbach, H., and Coauthors, 2018b: ERA5 hourly data on pressure levels from 1979 to present. C3S and CDS, accessed 10 June 2020, https://doi.org/10.24381/cds.bd0915c6.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425461, https://doi.org/10.1002/qj.49711548702.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Huaman, L., and K. Takahashi, 2016: The vertical structure of the eastern Pacific ITCZs and associated circulation using the TRMM Precipitation Radar and in situ data. Geophys. Res. Lett., 43, 82308239, https://doi.org/10.1002/2016GL068835.

    • Search Google Scholar
    • Export Citation
  • Huaman, L., and C. Schumacher, 2018: Assessing the vertical latent heating structure of the east Pacific ITCZ using the CloudSat CPR and TRMM PR. J. Climate, 31, 25632577, https://doi.org/10.1175/JCLI-D-17-0590.1.

    • Search Google Scholar
    • Export Citation
  • Huaman, L., C. Schumacher, and A. H. Sobel, 2022: Assessing the vertical velocity of the east Pacific ITCZ. Geophys. Res. Lett., 49, e2021GL096192, https://doi.org/10.1029/2021GL096192.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, E. J. Nelkin, and R. F. Adler, 2016: TRMM (TMPA) precipitation L3 1 day 0.25 degree × 0.25 degree V7. GES DISC, accessed 28 February 2019, https://doi.org/10.5067/TRMM/TMPA/DAY/7.

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, https://doi.org/10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. I. Schreck, 2018: International Best Track Archive for Climate Stewardship (IBTrACS) project, version 4. NCEI, accessed 23 November 2021, https://doi.org/10.25921/82ty-9e16.

  • Liu, C., and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, https://doi.org/10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Miao, H., X. Wang, Y. Liu, and G. Wu, 2019: An evaluation of cloud vertical structure in three reanalyses against CloudSat/cloud-aerosol lidar and infrared pathfinder satellite observations. Atmos. Sci. Lett., 20, e906, https://doi.org/10.1002/asl.906.

    • Search Google Scholar
    • Export Citation
  • Molod, A., 2012: Constraints on the profiles of total water PDF in AGCMs from AIRS and a high-resolution model. J. Climate, 25, 83418352, https://doi.org/10.1175/JCLI-D-11-00412.1.

    • Search Google Scholar
    • Export Citation
  • NAS, 2018: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. National Academies Press, 716 pp., https://doi.org/10.17226/24938.

  • Quaas, J., 2012: Evaluating the “critical relative humidity” as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data. J. Geophys. Res., 117, D09208, https://doi.org/10.1029/2012JD017495.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2015: Diurnally modulated cumulus moistening in the preonset stage of the Madden–Julian oscillation during DYNAMO. J. Atmos. Sci., 72, 16221647, https://doi.org/10.1175/JAS-D-14-0218.1.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and R. H. Johnson, 2016: On the cumulus diurnal cycle over the tropical warm pool. J. Adv. Model. Earth Syst., 8, 669690, https://doi.org/10.1002/2015MS000610.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and D. Klocke, 2019: The two diurnal modes of tropical upward motion. Geophys. Res. Lett., 46, 29112921, https://doi.org/10.1029/2018GL081806.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., V. Chandrasekar, B. Fuchs, J. George, F. Junyent, P. Kennedy, and B. Dolan, 2019a: Deployment of the SEA-POL C-band polarimetric radar to SPURS-2. Oceanography, 32, 5057, https://doi.org/10.5670/oceanog.2019.212.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., V. Chandrasekar, B. Fuchs, J. George, F. Junyent, B. Dolan, P. C. Kennedy, and K. Drushka, 2019b: SEA-POL goes to sea. Bull. Amer. Meteor. Soc., 100, 22852301, https://doi.org/10.1175/BAMS-D-18-0233.1.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., S. W. Powell, J. Dias, and G. N. Kiladis, 2018: The diurnal variability of precipitating cloud populations during DYNAMO. J. Atmos. Sci., 75, 13071326, https://doi.org/10.1175/JAS-D-17-0312.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, https://doi.org/10.1175/JAS3938.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Sprintall, E. D. Maloney, Z. K. Martin, S. Wang, S. P. de Szoeke, B. C. Trabing, and S. A. Rutledge, 2021: Large-scale state and evolution of the atmosphere and ocean during PISTON 2018. J. Climate, 34, 50175035, https://doi.org/10.1175/JCLI-D-20-0517.1.

    • Search Google Scholar
    • Export Citation
  • Sui, C.-H., K.-M. Lau, Y. N. Takayabu, and D. A. Short, 1997: Diurnal variations in tropical oceanic cumulus convection during TOGA COARE. J. Atmos. Sci., 54, 639655, https://doi.org/10.1175/1520-0469(1997)054<0639:DVITOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wall, C. J., J. R. Norris, B. Gasparini, W. L. Smith Jr., M. M. Thieman, and O. Sourdeval, 2020: Observational evidence that radiative heating modifies the life cycle of tropical anvil clouds. J. Climate, 33, 86218640, https://doi.org/10.1175/JCLI-D-20-0204.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolding, B., S. W. Powell, F. Ahmed, J. Dias, M. Gehne, G. Kiladis, and J. D. Neelin, 2022: Tropical thermodynamic–convection coupling in observations and reanalyses. J. Atmos. Sci., 79, 17811803, https://doi.org/10.1175/JAS-D-21-0256.1.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., and Coauthors, 2020: Differences in tropical high clouds among reanalyses: Origins and radiative impacts. Atmos. Chem. Phys., 20, 89899030, https://doi.org/10.5194/acp-20-8989-2020.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, https://doi.org/10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 756 588 37
Full Text Views 262 221 13
PDF Downloads 237 185 16