• Andrews, T., and M. J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641654, https://doi.org/10.1175/JCLI-D-17-0087.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., J. M. Gregory, and M. J. Webb, 2015: The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Climate, 28, 16301648, https://doi.org/10.1175/JCLI-D-14-00545.1.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and Coauthors, 2022: On the effect of historical SST patterns on radiative feedback. J. Geophys. Res. Atmos., 127, e2022JD036675, https://doi.org/10.1029/2022JD036675.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Search Google Scholar
    • Export Citation
  • Armour, K. C., J. Marshall, J. R. Scott, A. Donohoe, and E. R. Newsom, 2016: Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci., 9, 549554, https://doi.org/10.1038/ngeo2731.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bloch-Johnson, J., M. Rugenstein, and D. S. Abbot, 2020: Spatial radiative feedbacks from internal variability using multiple regression. J. Climate, 33, 41214140, https://doi.org/10.1175/JCLI-D-19-0396.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl. Acad. Sci. USA, 114, 13 12613 131, https://doi.org/10.1073/pnas.1714308114.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and S. Fueglistaler, 2021: The El Niño–Southern oscillation pattern effect. Geophys. Res. Lett., 48, e2021GL095261, https://doi.org/10.1029/2021GL095261.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128129, https://doi.org/10.1126/science.aav7619.

    • Search Google Scholar
    • Export Citation
  • Dong, Y., C. Proistosescu, K. C. Armour, and D. S. Battisti, 2019: Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: The preeminence of the western Pacific. J. Climate, 32, 54715491, https://doi.org/10.1175/JCLI-D-18-0843.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and L. G. Silvers, 2021: The peculiar trajectory of global warming. J. Geophys. Res. Atmos., 126, e2020JD033629, https://doi.org/10.1029/2020JD033629.

    • Search Google Scholar
    • Export Citation
  • He, H., R. J. Kramer, and B. J. Soden, 2021: Evaluating observational constraints on intermodel spread in cloud, temperature, and humidity feedbacks. Geophys. Res. Lett., 48, e2020GL092309, https://doi.org/10.1029/2020GL092309.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and Coauthors, 2019: Structure and performance of GFDL’s CM4.0 climate model. J. Adv. Model. Earth Syst., 11, 36913727, https://doi.org/10.1029/2019MS001829.

    • Search Google Scholar
    • Export Citation
  • Liu, M., G. Vecchi, B. Soden, W. Yang, and B. Zhang, 2021: Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change. Nat. Climate Change, 11, 848853, https://doi.org/10.1038/s41558-021-01152-0.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and O. Garuba, 2017: The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Climate, 30, 28112827, https://doi.org/10.1175/JCLI-D-16-0454.1.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., M. Rugenstein, and J. Marotzke, 2020: Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys. Res. Lett., 47, e2019GL086773, https://doi.org/10.1029/2019GL086773.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and L. Rayborn, 2016: The effects of ocean heat uptake on transient climate sensitivity. Curr. Climate Change Rep., 2, 190201, https://doi.org/10.1007/s40641-016-0048-4.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., S. C. Sherwood, S. Bony, and M. J. Webb, 2016: Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future, 4, 512522, https://doi.org/10.1002/2016EF000376.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., B. J. Soden, W. Yang, and G. A. Vecchi, 2021: Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett., 48, e2020GL091024, https://doi.org/10.1029/2020GL091024.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Search Google Scholar
    • Export Citation
  • Winton, M., and Coauthors, 2020: Climate Sensitivity of GFDL’s CM4.0. J. Adv. Model. Earth Syst., 12, e2019MS001838, https://doi.org/10.1029/2019MS001838.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. Fueglistaler, 2019: Mechanism for increasing tropical rainfall unevenness with global warming. Geophys. Res. Lett., 46, 14 83614 843, https://doi.org/10.1029/2019GL086058.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. Fueglistaler, 2020: How tropical convection couples high moist static energy over land and ocean. Geophys. Res. Lett., 47, e2019GL086387, https://doi.org/10.1029/2019GL086387.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., 2022: An investigation of the effective climate sensitivity in GFDL’s new climate models CM4.0 and SPEAR. J. Climate, 35, 56375660, https://doi.org/10.1175/JCLI-D-21-0327.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018a: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018b: The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation characteristics with prescribed SSTs. J. Adv. Model. Earth Syst., 10, 691734, https://doi.org/10.1002/2017MS001208.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2016: Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci., 9, 871874, https://doi.org/10.1038/ngeo2828.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., M. D. Zelinka, and S. A. Klein, 2017: Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a Green’s function approach. J. Adv. Model. Earth Syst., 9, 21742189, https://doi.org/10.1002/2017MS001096.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 565 565 27
Full Text Views 262 262 36
PDF Downloads 313 313 26

Using a Green’s Function Approach to Diagnose the Pattern Effect in GFDL AM4 and CM4

Bosong ZhangaProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Bosong Zhang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0334-7128
,
Ming ZhaobNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Ming Zhao in
Current site
Google Scholar
PubMed
Close
, and
Zhihong TanaProgram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Zhihong Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global radiative feedbacks exhibit large dependence on the spatial structure of sea surface temperature (SST) changes, which is referred to as the “pattern effect.” A Green’s function (GF) approach has been demonstrated to be useful in identifying and understanding contributions of regional SST changes to global radiative feedbacks. Here, we explore the ability of the GF approach in quantifying the pattern effect in an atmospheric model (AM4) and a coupled model (CM4) recently developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), including the impact of SST changes on global-mean and local responses of key variables important to climate. Given historical SST patterns, the GF derived from idealized experiments with SST warming patches can largely reproduce AM4 simulated global-mean and regional responses. When AM4 is forced by SST patterns retrieved from the CM4 abrupt quadrupling of carbon dioxide experiment, the same GF captures interannual variations of AM4 simulated global-mean responses but falls short of reproducing the magnitude of the responses. A decomposition of such SST patterns into global-mean values plus remaining anomalies helps reduce biases. Additional idealized experiments are conducted to examine the sensitivity of the GF to the amplitude and sign of SST perturbations and to the integration time and the confidence level of the significance test. Impacts of these factors on the performance of the GF are discussed.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bosong Zhang, bosongzhang@gmail.com

Abstract

Global radiative feedbacks exhibit large dependence on the spatial structure of sea surface temperature (SST) changes, which is referred to as the “pattern effect.” A Green’s function (GF) approach has been demonstrated to be useful in identifying and understanding contributions of regional SST changes to global radiative feedbacks. Here, we explore the ability of the GF approach in quantifying the pattern effect in an atmospheric model (AM4) and a coupled model (CM4) recently developed at NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL), including the impact of SST changes on global-mean and local responses of key variables important to climate. Given historical SST patterns, the GF derived from idealized experiments with SST warming patches can largely reproduce AM4 simulated global-mean and regional responses. When AM4 is forced by SST patterns retrieved from the CM4 abrupt quadrupling of carbon dioxide experiment, the same GF captures interannual variations of AM4 simulated global-mean responses but falls short of reproducing the magnitude of the responses. A decomposition of such SST patterns into global-mean values plus remaining anomalies helps reduce biases. Additional idealized experiments are conducted to examine the sensitivity of the GF to the amplitude and sign of SST perturbations and to the integration time and the confidence level of the significance test. Impacts of these factors on the performance of the GF are discussed.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bosong Zhang, bosongzhang@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 327 KB)
Save