• Amador, J. A., 2008: The Intra-Americas Sea low-level jet: Overview and future research. Ann. N. Y. Acad. Sci., 1146, 153188, https://doi.org/10.1196/annals.1446.012.

    • Search Google Scholar
    • Export Citation
  • Ankur, K., N. K. R. Busireddy, K. K. Osuri, and D. Niyogi, 2020: On the relationship between intensity changes and rainfall distribution in tropical cyclones over the north Indian Ocean. Int. J. Climatol., 40, 20152025, https://doi.org/10.1002/joc.6315.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T., G. A. Vecchi, T. R. Knutson, H. Murakami, J. Kossin, K. W. Dixon, and C. E. Whitlock, 2019: Recent increases in tropical cyclone intensification rates. Nat. Commum, 10, 635, https://doi.org/10.1038/s41467-019-08471-z.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 4364, https://doi.org/10.1175/JAS3609.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Search Google Scholar
    • Export Citation
  • Cao, X., T. Li, M. Peng, W. Chen, and G. Chen, 2014: Effects of monsoon trough interannual variation on tropical cyclogenesis over the western North Pacific. Geophys. Res. Lett., 41, 43324339, https://doi.org/10.1002/2014GL060307.

    • Search Google Scholar
    • Export Citation
  • Cao, X., G. Chen, T. Li, and F. Ren, 2016: Simulations of tropical cyclogenesis associated with different monsoon trough patterns over the western North Pacific. Meteor. Atmos. Phys., 128, 491511, https://doi.org/10.1007/s00703-015-0428-7.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., J. E. Shi, and K. S. Liu, 2001: Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific. Wea. Forecasting, 16, 491498, https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235255, https://doi.org/10.1175/JAS-D-17-0129.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., T. Zhou, P. Wu, Z. Guo, and M. Wang, 2020: Emergent constraints on future projections of the western North Pacific subtropical high. Nat. Commun., 11, 2802, https://doi.org/10.1038/s41467-020-16631-9.

    • Search Google Scholar
    • Export Citation
  • Choi, K.-S., Y. Cha, H.-D. Kim, and S.-D. Kang, 2016: Possible relationship between East Asian summer monsoon and western North Pacific tropical cyclone genesis frequency. Theor. Appl. Climatol., 124, 8190, https://doi.org/10.1007/s00704-015-1383-4.

    • Search Google Scholar
    • Export Citation
  • Chu, Q.-C., Q.-G. Wang, and G.-L. Feng, 2017: Determination of the major moisture sources of cumulative effect of torrential rain events during the preflood season over South China using a Lagrangian particle model. J. Geophys. Res. Atmos., 122, 83698382, https://doi.org/10.1002/2016JD026426.

    • Search Google Scholar
    • Export Citation
  • Cloux, S., D. Garaboa-Paz, D. Insua-Costa, G. Miguez-Macho, and V. Pérez-Muñuzuri, 2021: Extreme precipitation events in the Mediterranean area: Contrasting Lagrangian and Eulerian models for moisture sources identification. Hydrol. Earth Syst., 25, 64656477, https://doi.org/10.5194/hess-25-6465-2021.

    • Search Google Scholar
    • Export Citation
  • Coll-Hidalgo, P., A. Pérez-Alarcón, and L. Gimeno, 2022a: Origin of moisture for the precipitation produced by the exceptional winter storm formed over the Gulf of Mexico in March 1993. Atmosphere, 13, 1154, https://doi.org/10.3390/atmos13071154.

    • Search Google Scholar
    • Export Citation
  • Coll-Hidalgo, P., A. Pérez-Alarcón, and R. Nieto, 2022b: Moisture sources for the precipitation of tropical-like cyclones in the Mediterranean Sea: A case of study. Atmosphere, 13, 1327, https://doi.org/10.3390/atmos13081327.

    • Search Google Scholar
    • Export Citation
  • Corporal-Lodangco, I. L., M. B. Richman, L. M. Leslie, and P. J. Lamb, 2014: Cluster analysis of North Atlantic tropical cyclones. Procedia Comput. Sci., 36, 293300, https://doi.org/10.1016/j.procs.2014.09.096.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., and S. Xie, 2008: The tropical eastern Pacific seasonal cycle: Assessment of errors and mechanisms in IPCC AR4 coupled ocean–atmosphere general circulation models. J. Climate, 21, 25732590, https://doi.org/10.1175/2007JCLI1975.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, C., and V. Magaña, 2018: The role of tropical cyclones in precipitation over the tropical and subtropical North America. Front. Earth Sci., 6, 19, https://doi.org/10.3389/feart.2018.00019.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., 2004: Monsoon-related tropical cyclones in East Asia. East Asian Monsoon, C.-P. Chang, Ed., World Scientific, 463–498, https://doi.org/10.1142/9789812701411_0013.

  • Emanuel, K. A. 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192.

  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fahad, A. A., N. J. Burls, E. T. Swenson, and D. M. Straus, 2021: The influence of South Pacific convergence zone heating on the South Pacific subtropical anticyclone. J. Climate, 34, 37873798, https://doi.org/10.1175/JCLI-D-20-0509.1.

    • Search Google Scholar
    • Export Citation
  • Feng, X., and S. Shu, 2018: How do weak tropical cyclones produce heavy rainfall when making landfall over China? J. Geophys. Res. Atmos., 123, 11 83011 848, https://doi.org/10.1029/2018JD029228.

    • Search Google Scholar
    • Export Citation
  • Feng, X., and L. Wu, 2021: Roles of interdecadal variability of the western North Pacific monsoon trough in shifting tropical cyclone formation. Climate Dyn., 58, 8795, https://doi.org/10.1007/s00382-021-05891-w.

    • Search Google Scholar
    • Export Citation
  • Fremme, A., and H. Sodemann, 2019: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley. Hydrol. Earth Syst. Sci., 23, 25252540, https://doi.org/10.5194/hess-23-2525-2019.

    • Search Google Scholar
    • Export Citation
  • Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 43214332, https://doi.org/10.1175/JAS-D-13-0378.1.

    • Search Google Scholar
    • Export Citation
  • Fu, D., P. Chang, C. M. Patricola, R. Saravanan, X. Liu, and H. E. Beck, 2021: Central American mountains inhibit eastern North Pacific seasonal tropical cyclone activity. Nat. Commun., 12, 4422, https://doi.org/10.1038/s41467-021-24657-w.

    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., R. Yoshida, M. Yamaguchi, H. Eito, C. Muroi, S. Nishimura, and Coauthors, 2020: Development conditions for tropical storms over the western North Pacific stratified by large-scale flow patterns. J. Meteor. Soc. Japan, 98, 6172, https://doi.org/10.2151/jmsj.2020-004.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, K., R. Kawamura, H. Hirata, T. Kawano, M. Kato, and T. Shinoda, 2017: A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics. J. Geophys. Res. Atmos., 122, 12 50212 512, https://doi.org/10.1002/2017JD027557.

    • Search Google Scholar
    • Export Citation
  • Gallego, D., R. García-Herrera, F. D. P. Gómez-Delgado, P. Ordoñez-Pérez, and P. Ribera, 2019: Tracking the moisture transport from the Pacific towards central and northern South America since the late 19th century. Earth Syst. Dyn., 10, 319331, https://doi.org/10.5194/esd-10-319-2019.

    • Search Google Scholar
    • Export Citation
  • Gao, S., L. Zhu, W. Zhang, and X. Shen, 2020: Western North Pacific tropical cyclone activity in 2018: A season of extremes. Sci. Rep., 10, 5610, https://doi.org/10.1038/s41598-020-62632-5.

    • Search Google Scholar
    • Export Citation
  • Gao, S., J. Mao, W. Zhang, F. Zhang, and X. Shen, 2021: Atmospheric moisture shapes increasing tropical cyclone precipitation in southern China over the past four decades. Environ. Res. Lett., 16, 034004, https://doi.org/10.1088/1748-9326/abd78a.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2020: Recent progress on the sources of continental precipitation as revealed by moisture transport analysis. Earth-Sci. Rev., 201, 103070, https://doi.org/10.1016/j.earscirev.2019.103070.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2021: The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ., 2, 558569, https://doi.org/10.1038/s43017-021-00181-9.

    • Search Google Scholar
    • Export Citation
  • Goessling, H. F., and C. H. Reick, 2013: On the “well-mixed” assumption and numerical 2-D tracing of atmospheric moisture. Atmos. Chem. Phys., 13, 55675585, https://doi.org/10.5194/acp-13-5567-2013.

    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., R. P. da Rocha, L. Gimeno, and A. Drumond, 2017: Climatology and numerical case study of moisture sources associated with subtropical cyclogenesis over the southwestern Atlantic Ocean. J. Geophys. Res. Atmos., 122, 56365653, https://doi.org/10.1002/2016JD025764.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, L., N. P. Klingaman, P. L. Vidale, A. G. Turner, M.-E. Demory, and A. Cobb, 2017: Contribution of tropical cyclones to atmospheric moisture transport and rainfall over East Asia. J. Climate, 30, 38533865, https://doi.org/10.1175/JCLI-D-16-0308.1.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO/TD 1555, 54 pp., https://library.wmo.int/doc_num.php?explnum_id=290.

  • Harvey, T., J. A. Renwick, A. M. Lorrey, and A. Ngari, 2019: The representation of the South Pacific convergence zone in the Twentieth Century Reanalysis. Mon. Wea. Rev., 147, 841851, https://doi.org/10.1175/MWR-D-18-0237.1.

    • Search Google Scholar
    • Export Citation
  • Hastenrath, S., 2002: The intertropical convergence zone of the eastern Pacific revisited. Int. J. Climatol., 22, 347356, https://doi.org/10.1002/joc.739.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Search Google Scholar
    • Export Citation
  • Hodges, K., A. Cobb, and P. L. Vidale, 2017: How well are tropical cyclones represented in reanalysis datasets? J. Climate, 30, 52435264, https://doi.org/10.1175/JCLI-D-16-0557.1.

    • Search Google Scholar
    • Export Citation
  • Hordon, R. M., 2005: Pacific (Hawaiian) high. Encyclopedia of World Climatology. J. E. Oliver, Ed., Springer, 562–563, https://doi.org/10.1007/1-4020-3266-8_156.

  • Hu, Q., D. Jiang, X. Lang, and S. Yao, 2021: Moisture sources of summer precipitation over eastern China during 1979–2009: A Lagrangian transient simulation. Int. J. Climatol., 41, 11621178, https://doi.org/10.1002/joc.6781.

    • Search Google Scholar
    • Export Citation
  • Huang, H.-L., M.-J. Yang, and C.-H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112129, https://doi.org/10.1175/JAS-D-13-053.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of tropical cyclone intensity. J. Climate, 26, 99609976, https://doi.org/10.1175/JCLI-D-13-00262.1.

    • Search Google Scholar
    • Export Citation
  • Kudo, T., R. Kawamura, H. Hirata, K. Ichiyanagi, M. Tanoue, and K. Yoshimura, 2014: Large-scale vapor transport of remotely evaporated sea water by a Rossby wave response to typhoon forcing during the Baiu/Meiyu season as revealed by the JRA-55 reanalysis. J. Geophys. Res. Atmos., 119, 88258838, https://doi.org/10.1002/2014JD021999.

    • Search Google Scholar
    • Export Citation
  • Läderach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Search Google Scholar
    • Export Citation
  • MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Proc. Fifth Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, CA, University of California, 281297, http://www.cs.cmu.edu/∼bhiksha/courses/mlsp.fall2010/class14/macqueen.pdf.

  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2013: What percentage of western North Pacific tropical cyclones form within the monsoon trough? Mon. Wea. Rev., 141, 499505, https://doi.org/10.1175/MWR-D-12-00165.1.

    • Search Google Scholar
    • Export Citation
  • Morissette, L., and S. Chartier, 2013: The k-means clustering technique: General considerations and implementation in Mathematica. Tutorials Quant. Methods Psychol., 9, 1524, https://doi.org/10.20982/tqmp.09.1.p015.

    • Search Google Scholar
    • Export Citation
  • Ng, B., K. Walsh, and S. Lavender, 2014: The contribution of tropical cyclones to rainfall in northwest Australia. Int. J. Climatol., 35, 26892697, https://doi.org/10.1002/joc.4148.

    • Search Google Scholar
    • Export Citation
  • Niznik, M., B. R. Lintner, A. J. Matthews, and M. J. Widlansky, 2015: The role of tropical–extratropical interaction and synoptic variability in maintaining the South Pacific convergence zone in CMIP5 models. J. Climate, 28, 33533374, https://doi.org/10.1175/JCLI-D-14-00527.1.

    • Search Google Scholar
    • Export Citation
  • Numaguti, A., 1999: Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res., 104, 19571972, https://doi.org/10.1029/1998JD200026.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., F. Aemisegger, and H. Wernli, 2021: Sources and transport pathways of precipitating waters in cold-season deep North Atlantic cyclones. J. Atmos. Sci., 78, 33493368, https://doi.org/10.1175/JAS-D-21-0105.1.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., R. Sorí, J. C. Fernández-Alvarez, R. Nieto, and L. Gimeno, 2021a: Comparative climatology of outer tropical cyclone size using radial wind profiles. Wea. Climate Extremes, 33, 100366, https://doi.org/10.1016/j.wace.2021.100366.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., J. C. Fernández-Alvarez, R. Sorí, R. Nieto, and L. Gimeno, 2021b: The combined effects of SST and the North Atlantic subtropical high-pressure system on the Atlantic basin tropical cyclone interannual variability. Atmosphere, 12, 329, https://doi.org/10.3390/atmos12030329.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., R. Sorí, J. C. Fernández-Alvarez, R. Nieto, and L. Gimeno, 2022a: Where does the moisture for North Atlantic tropical cyclones come from? J. Hydrometeor., 23, 457472, https://doi.org/10.1175/JHM-D-21-0117.1.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., P. Coll-Hidalgo, J. C. Fernández-Alvarez, R. Sorí, R. Nieto, and L. Gimeno, 2022b: Moisture sources for precipitation associated with major hurricanes during 2017 in the North Atlantic basin. J. Geophys. Res. Atmos., 127, e2021JD035554, https://doi.org/10.1029/2021JD035554.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., R. Sorí, J. C. Fernández-Alvarez, R. Nieto, and L. Gimeno, 2022c: Dataset of outer tropical cyclone size from a radial wind profile. Data Brief, 40, 107825, https://doi.org/10.1016/j.dib.2022.107825.

    • Search Google Scholar
    • Export Citation
  • Pérez-Alarcón, A., J. C. Fernández-Alvarez, R. Sorí, R. Nieto, and L. Gimeno, 2022d: Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: A Lagrangian approach. Climate Dyn., https://doi.org/10.1007/s00382-022-06429-4, in press.

    • Search Google Scholar
    • Export Citation
  • Pisso, I., and Coauthors, 2019: The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev., 12, 49554997, https://doi.org/10.5194/gmd-12-4955-2019.

    • Search Google Scholar
    • Export Citation
  • Pottapinjara, V., M. S. Girishkumar, R. Murtugudde, K. Ashok, and M. Ravichandran, 2019: On the relation between the boreal spring position of the Atlantic intertropical convergence zone and Atlantic zonal mode. J. Climate, 32, 47674781, https://doi.org/10.1175/JCLI-D-18-0614.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, W., F. Ren, L. Wu, L. Chen, and C. Ding, 2019: Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China . Meteor. Atmos. Phys., 131, 613626, https://doi.org/10.1007/s00703-018-0594-5.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. M., R. Nieto, R. Tomé, L. Gimeno, R. M. Trigo, M. L. R. Liberato, and D. A. Lavers, 2016: Atmospheric rivers moisture sources from a Lagrangian perspective. Earth Syst. Dyn., 7, 371384, https://doi.org/10.5194/esd-7-371-2016.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., III, 2016: Convectively coupled Kelvin waves and tropical cyclogenesis in a semi-Lagrangian framework. Mon. Wea. Rev., 144, 41314139, https://doi.org/10.1175/MWR-D-16-0237.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., 2020: Beyond turnover time: Constraining the lifetime distribution of water vapor from simple and complex approaches. J. Atmos. Sci., 77, 413433, https://doi.org/10.1175/JAS-D-18-0336.1.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2004: Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe. J. Hydrometeor., 5, 656678, https://doi.org/10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., and P. A. James, 2005: A Lagrangian analysis of the atmospheric branch of the global water cycle: Part II: Earth’s river catchments ocean basins, and moisture transports between them. J. Hydrometeor., 6, 961984, https://doi.org/10.1175/JHM470.1.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 24612474, https://doi.org/10.5194/acp-5-2461-2005.

    • Search Google Scholar
    • Export Citation
  • Takahashi, K., and D. S. Battisti, 2007: Processes controlling the mean tropical Pacific precipitation pattern. Part I: The Andes and the eastern Pacific ITCZ. J. Climate, 20, 34343451, https://doi.org/10.1175/JCLI4198.1.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Ent, R. J., and O. A. Tuinenburg, 2017: The residence time of water in the atmosphere revisited. Hydrol. Earth Syst. Sci., 21, 779790, https://doi.org/10.5194/hess-21-779-2017.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and T. R. Knutson, 2008: On estimates of historical North Atlantic tropical cyclone activity. J. Climate, 21, 35803600, https://doi.org/10.1175/2008JCLI2178.1.

    • Search Google Scholar
    • Export Citation
  • Vincent, E. M., M. Lengaigne, C. E. Menkes, N. C. Jourdain, P. Marchesiello, and G. Madec, 2011: Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Climate Dyn., 36, 18811896, https://doi.org/10.1007/s00382-009-0716-3.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C. J. Matyas, 2022: Simulating the effects of land surface characteristics on planetary boundary layer parameters for a modeled landfalling tropical cyclone. Atmosphere, 13, 138, https://doi.org/10.3390/atmos13010138.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and I. Hankes, 2016: Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSM/I–SSMIS retrievals. J. Atmos. Sci., 73, 27732781, https://doi.org/10.1175/JAS-D-15-0306.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., R. W. R. Darling, and M. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 11021120, https://doi.org/10.1175/MWR3106.1.

    • Search Google Scholar
    • Export Citation
  • Winschall, A., S. Pfahl, H. Sodemann, and H. Wernli, 2014: Comparison of Eulerian and Lagrangian moisture source diagnostics—The flood event in eastern Europe in May 2010. Atmos. Chem. Phys., 14, 66056619, https://doi.org/10.5194/acp-14-6605-2014.

    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Su, R. G. Fovell, T. J. Dunkerton, Z. Wang, and B. H. Kahn, 2015: Impact of environmental moisture on tropical cyclone intensification. Atmos. Chem. Phys., 15, 14 04114 053, https://doi.org/10.5194/acp-15-14041-2015.

    • Search Google Scholar
    • Export Citation
  • Wu, W., and J.-L. Chen, 2012: Sensitivity of tropical cyclone precipitation to atmospheric moisture content: Case study of Bilis (2006). Atmos. Oceanic Sci. Lett., 5, 420425, https://doi.org/10.1080/16742834.2012.11447030.

    • Search Google Scholar
    • Export Citation
  • Wu, W., J. Chen, and R. Huang, 2013: Water budgets of tropical cyclones: Three case studies. Adv. Atmos. Sci., 30, 468484, https://doi.org/10.1007/s00376-012-2050-7.

    • Search Google Scholar
    • Export Citation
  • Xin, F., D. Peng, R. Liu, and S. C. Liu, 2022: Moisture sources for the weather pattern classified extreme precipitation in the first rainy season over South China. Int. J. Climatol., 42, 60276041, https://doi.org/10.1002/joc.7576.

    • Search Google Scholar
    • Export Citation
  • Xu, G., T. J. Osborn, and A. J. Matthews, 2017: Moisture transport by Atlantic tropical cyclones onto the North American continent. Climate Dyn., 48, 31613182, https://doi.org/10.1007/s00382-016-3257-6.

    • Search Google Scholar
    • Export Citation
  • Yang, M.-J., S. A. Braun, and D. S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 38093828, https://doi.org/10.1175/MWR-D-10-05090.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, R., Y. Miyamoto, H. Tomita, and Y. Kajikawa, 2017: The effect of water vapor on tropical cyclone genesis: A numerical experiment of a non-developing disturbance observed in PALAU2010. J. Meteor. Soc. Japan, 95, 3547, https://doi.org/10.2151/jmsj.2017-001.

    • Search Google Scholar
    • Export Citation
  • Yu, J., Y. Zheng, Q. Wu, J. Lin, and Z. Gong, 2016: K-means clustering for classification of the northwestern Pacific tropical cyclone tracks. J. Trop. Meteor., 22, 127135, https://doi.org/10.16555/j.1006-8775.2016.02.003.

    • Search Google Scholar
    • Export Citation
  • Yu, Z., Y. Wang, H. Xu, N. Davidson, Y. Chen, Y. Chen, and H. Yu, 2017: On the relationship between intensity and rainfall distribution in tropical cyclones making landfall over China. J. Appl. Meteor. Climatol., 56, 28832901, https://doi.org/10.1175/JAMC-D-16-0334.1.

    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and M. Ying, 2012: Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review. Trop. Cyclone Res. Rev., 3, 307324, https://doi.org/10.6057/2012TCRR03.07.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., J. Zhang, L. Shi, and F. Yao, 2020: Interdecadal changes of characteristics of tropical cyclone rapid intensification over Western North Pacific. IEEE Access, 8, 15 78115 791, https://doi.org/10.1109/ACCESS.2020.2965976.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and Y. Wang, 2013: Cluster analysis of post-landfall tracks of landfalling tropical cyclones over China. Climate Dyn., 40, 12371255, https://doi.org/10.1007/s00382-012-1519-5.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. B. Raga, 2015: On the distinct interannual variability of tropical cyclone activity over the eastern North Pacific. Atmósfera, 28, 161178, https://doi.org/10.20937/ATM.2015.28.03.02.

    • Search Google Scholar
    • Export Citation
  • Zong, H., and L. Wu, 2015: Synoptic-scale influences on tropical cyclone formation within the western North Pacific monsoon trough. Mon. Wea. Rev., 143, 34213433, https://doi.org/10.1175/MWR-D-14-00321.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 452 452 69
Full Text Views 181 181 17
PDF Downloads 208 208 24

Moisture Source for the Precipitation of Tropical Cyclones over the Pacific Ocean through a Lagrangian Approach

Albenis Pérez-AlarcónaCentro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Universidade de Vigo, Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana, Cuba

Search for other papers by Albenis Pérez-Alarcón in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9454-2331
,
Rogert SoríaCentro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Universidade de Vigo, Ourense, Spain
cInstituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Portugal

Search for other papers by Rogert Sorí in
Current site
Google Scholar
PubMed
Close
,
José C. Fernández-AlvarezaCentro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Universidade de Vigo, Ourense, Spain
bDepartamento de Meteorología, Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de La Habana, La Habana, Cuba

Search for other papers by José C. Fernández-Alvarez in
Current site
Google Scholar
PubMed
Close
,
Raquel NietoaCentro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Universidade de Vigo, Ourense, Spain

Search for other papers by Raquel Nieto in
Current site
Google Scholar
PubMed
Close
, and
Luis GimenoaCentro de Investigación Mariña, Environmental Physics Laboratory (EPhysLab), Campus As Lagoas s/n, Universidade de Vigo, Ourense, Spain

Search for other papers by Luis Gimeno in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclones (TCs) are an important component of the hydrological cycle at tropical latitudes. In this study, we investigated the origin of precipitation associated with TCs formed from 1980 to 2018 over the Pacific Ocean in three subbasins: the western North Pacific Ocean (WNP), central and east Pacific Ocean (NEPAC), and South Pacific Ocean (SPO) basins. The analysis was performed throughout the TC lifetime during genesis, when they reached the lifetime maximum intensity (LMI), and the dissipation stage. The backward trajectories of all precipitant atmospheric parcels residing over the TC locations from the global outputs of the Lagrangian Flexible Particle (FLEXPART) dispersion model fed by the ERA-Interim dataset were used to identify moisture sources. The South and East China Seas and the western tropical North Pacific Ocean were identified as the principal moisture sources in the WNP basin, while the atmospheric moisture that precipitated mainly came from the eastern tropical North and South Pacific Ocean in the NEPAC basin, followed by the Caribbean Sea. Meanwhile, the Coral Sea, western tropical South Pacific Ocean, and northern Australia are the origins of the moisture in the SPO. The mean moisture uptake per TC was higher during the hurricane category than during any other stage in each basin.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albenis Pérez-Alarcón, albenis.perez.alarcon@uvigo.es

Abstract

Tropical cyclones (TCs) are an important component of the hydrological cycle at tropical latitudes. In this study, we investigated the origin of precipitation associated with TCs formed from 1980 to 2018 over the Pacific Ocean in three subbasins: the western North Pacific Ocean (WNP), central and east Pacific Ocean (NEPAC), and South Pacific Ocean (SPO) basins. The analysis was performed throughout the TC lifetime during genesis, when they reached the lifetime maximum intensity (LMI), and the dissipation stage. The backward trajectories of all precipitant atmospheric parcels residing over the TC locations from the global outputs of the Lagrangian Flexible Particle (FLEXPART) dispersion model fed by the ERA-Interim dataset were used to identify moisture sources. The South and East China Seas and the western tropical North Pacific Ocean were identified as the principal moisture sources in the WNP basin, while the atmospheric moisture that precipitated mainly came from the eastern tropical North and South Pacific Ocean in the NEPAC basin, followed by the Caribbean Sea. Meanwhile, the Coral Sea, western tropical South Pacific Ocean, and northern Australia are the origins of the moisture in the SPO. The mean moisture uptake per TC was higher during the hurricane category than during any other stage in each basin.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Albenis Pérez-Alarcón, albenis.perez.alarcon@uvigo.es

Supplementary Materials

    • Supplemental Materials (PDF 3.50 MB)
Save