• Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berg, A., and K. A. McColl, 2021: No projected global drylands expansion under greenhouse warming. Nat. Climate Change, 11, 331337, https://doi.org/10.1038/s41558-021-01007-8.

    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett., 44, 50965103, https://doi.org/10.1002/2016GL072281.

    • Search Google Scholar
    • Export Citation
  • Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Search Google Scholar
    • Export Citation
  • Doi, T., S. K. Behera, and T. Yamagata, 2020: Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett., 47, e2019GL086713, https://doi.org/10.1029/2019GL086713.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., P. Brando, G. P. Asner, and C. B. Field, 2015: Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA, 112, 13 17213 177, https://doi.org/10.1073/pnas.1421010112.

    • Search Google Scholar
    • Export Citation
  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157178, https://doi.org/10.1256/qj.01.211.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Feng, L., T. Li, and W. Yu, 2014: Cause of severe droughts in Southwest China during 1951–2010. Climate Dyn., 43, 20332042, https://doi.org/10.1007/s00382-013-2026-z.

    • Search Google Scholar
    • Export Citation
  • Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys., 13, 10 08110 094, https://doi.org/10.5194/acp-13-10081-2013.

    • Search Google Scholar
    • Export Citation
  • Ge, Z.-A., L. Chen, T. Li, and L. Wang, 2022: How frequently will the persistent heavy rainfall over the middle and lower Yangtze River basin in summer 2020 happen under global warming? Adv. Atmos. Sci., 39, 16731692, https://doi.org/10.1007/s00376-022-1351-8.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gong, D.-Y., and C.-H. Ho, 2003: Arctic oscillation signal in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, https://doi.org/10.1029/2002JD002193.

    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Search Google Scholar
    • Export Citation
  • Habeeb, D., J. Vargo, and B. Stone Jr., 2015: Rising heat wave trends in large US cities. Nat. Hazards, 76, 16511665, https://doi.org/10.1007/s11069-014-1563-z.

    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, and T. Zhou, 2017: Interannual variability of eastern China summer rainfall: The origins of the meridional triple and dipole modes. Climate Dyn., 48, 683696, https://doi.org/10.1007/s00382-016-3103-x.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., J. Perlwitz, C. Dewes, K. Wolter, I. Rangwala, X.-W. Quan, and J. Eischeid, 2019: Anthropogenic contributions to the intensity of the 2017 United States northern Great Plains drought. Bull. Amer. Meteor. Soc., 100 (1), S19S24, https://doi.org/10.1175/BAMS-D-18-0127.1.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: Introduction to Dynamic Meteorology. Academic Press, 535 pp.

  • Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo, 2016: Accelerated dryland expansion under climate change. Nat. Climate Change, 6, 166171, https://doi.org/10.1038/nclimate2837.

    • Search Google Scholar
    • Export Citation
  • Huang, J., H. Yu, A. Dai, Y. Wei, and L. Kang, 2017: Drylands face potential threat under 2°C global warming target. Nat. Climate Change, 7, 417422, https://doi.org/10.1038/nclimate3275.

    • Search Google Scholar
    • Export Citation
  • Huang, R., and W. Li, 1988: Influence of heat source anomaly over the western tropical Pacific on the subtropical high over East Asia and its physical mechanism. Chin. J. Atmos. Sci., 12, 107116, https://doi.org/10.3878/j.issn.1006-9895.1988.t1.08.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Weather and climate extreme events in a changing climate. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1513–1766.

  • Kirono, D. G. C., V. Round, C. Heady, F. H. S. Chiew, and S. Osbrough, 2020: Drought projections for Australia: Updated results and analysis of model simulations. Wea. Climate Extremes, 30, 100280, https://doi.org/10.1016/j.wace.2020.100280.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., M. Matricardi, D. Dee, and S. Uppala, 2009: Toward a consistent reanalysis of the upper stratosphere based on radiance measurements from SSU and AMSU-A. Quart. J. Roy. Meteor. Soc., 135, 20862099, https://doi.org/10.1002/qj.514.

    • Search Google Scholar
    • Export Citation
  • Lehmann, J., D. Coumou, and K. Frieler, 2015: Increased record-breaking precipitation events under global warming. Climatic Change, 132, 501515, https://doi.org/10.1007/s10584-015-1434-y.

    • Search Google Scholar
    • Export Citation
  • Li, H., H. Chen, H. Wang, J. Sun, and J. Ma, 2018: Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31, 47054725, https://doi.org/10.1175/JCLI-D-17-0429.1.

    • Search Google Scholar
    • Export Citation
  • Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Search Google Scholar
    • Export Citation
  • Lu, B., and H.-L. Ren, 2020: What caused the extreme Indian Ocean dipole event in 2019? Geophys. Res. Lett., 47, e2020GL087768, https://doi.org/10.1029/2020GL087768.

    • Search Google Scholar
    • Export Citation
  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus, 54A, 4455, https://doi.org/10.3402/tellusa.v54i1.12122.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., J. Yang, M. Gao, and D. Chen, 2020: Extreme hot days over three global mega-regions: Historical fidelity and future projection. Atmos. Sci. Lett., 21, e1003, https://doi.org/10.1002/asl.1003.

    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, O. Angélil, and H. Shiogama, 2017: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. J. Climate, 30, 65436560, https://doi.org/10.1175/JCLI-D-16-0636.1.

    • Search Google Scholar
    • Export Citation
  • Ma, S., C. Zhu, and J. Liu, 2020: Combined impacts of warm central equatorial Pacific sea surface temperatures and anthropogenic warming on the 2019 severe drought in East China. Adv. Atmos. Sci., 37, 11491163, https://doi.org/10.1007/s00376-020-0077-8.

    • Search Google Scholar
    • Export Citation
  • Ma, Z., and C. Fu, 2006: Some evidence of drying trend over northern China from 1951 to 2004. Chin. Sci. Bull., 51, 29132925, https://doi.org/10.1007/s11434-006-2159-0.

    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and J. C. Espinoza, 2016: Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol., 36, 10331050, https://doi.org/10.1002/joc.4420.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology. Anaheim, CA, Amer. Meteor. Soc., 179184.

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Papalexiou, S. M., and A. Montanari, 2019: Global and regional increase of precipitation extremes under global warming. Water Resour. Res., 55, 49014914, https://doi.org/10.1029/2018WR024067.

    • Search Google Scholar
    • Export Citation
  • Pascale, S., V. Lucarini, X. Feng, and A. Porporato, 2016: Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Climate Dyn., 46, 13311350, https://doi.org/10.1007/s00382-015-2648-4.

    • Search Google Scholar
    • Export Citation
  • Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep., 7, 12256, https://doi.org/10.1038/s41598-017-12520-2.

    • Search Google Scholar
    • Export Citation
  • Qi, L., Y. Ji, and W. Zhang, 2021: Indispensable role of the Madden–Julian oscillation in the 2019 extreme autumn drought over eastern China. J. Geophys. Res. Atmos., 126, e2020JD034123, https://doi.org/10.1029/2020JD034123.

    • Search Google Scholar
    • Export Citation
  • Qiu, Y., W. Cai, X. Guo, and B. Ng, 2014: The asymmetric influence of the positive and negative IOD events on China’s rainfall. Sci. Rep., 4, 4943, https://doi.org/10.1038/srep04943.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 1996: The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institute for Meteorology Rep. 218, 90 pp., http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/MPI-Report_218.pdf.

  • Shi, L., P. Feng, B. Wang, D. Li Liu, and Q. Yu, 2020: Quantifying future drought change and associated uncertainty in southeastern Australia with multiple potential evapotranspiration models. J. Hydrol., 590, 125394, https://doi.org/10.1016/j.jhydrol.2020.125394.

    • Search Google Scholar
    • Export Citation
  • Sternberg, T., 2011: Regional drought has a global impact. Nature, 472, 169, https://doi.org/10.1038/472169d.

  • Su, J., T. Li, and R. Zhang, 2014: The initiation and developing mechanisms of central Pacific El Niños. J. Climate, 27, 44734485, https://doi.org/10.1175/JCLI-D-13-00640.1.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and S. Yang, 2012: Persistent severe drought in southern China during winter–spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and J. Ao, 2013: Changes in precipitation and extreme precipitation in a warming environment in China. Chin. Sci. Bull., 58, 13951401, https://doi.org/10.1007/s11434-012-5542-z.

    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Yuan, and H. Chen, 2010: Spatial-temporal features of intense snowfall events in China and their possible change. J. Geophys. Res., 115, D16110, https://doi.org/10.1029/2009JD013541.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., T. Hu, X. Zhang, H. Wan, P. Stott, and C. Lu, 2018: Anthropogenic influence on the eastern China 2016 super cold surge. Bull. Amer. Meteor. Soc., 99 (1), S123S127, https://doi.org/10.1175/BAMS-D-17-0092.1.

    • Search Google Scholar
    • Export Citation
  • Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall, 2018: Increasing precipitation volatility in twenty-first-century California. Nat. Climate Change, 8, 427433, https://doi.org/10.1038/s41558-018-0140-y.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 11951211, https://doi.org/10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, J., Y. Chen, S. F. Tett, Z. Yan, P. Zhai, J. Feng, and J. Xia, 2020: Anthropogenically-driven increases in the risks of summertime compound hot extremes. Nat. Commun., 11, 528, https://doi.org/10.1038/s41467-019-14233-8.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and G. Huang, 2015a: Drought in Southwest China: A review. Atmos. Oceanic Sci. Lett., 8, 339344, https://doi.org/10.3878/AOSL20150043.

    • Search Google Scholar
    • Export Citation
  • Wang, L., W. Chen, W. Zhou, and G. Huang, 2015b: Teleconnected influence of tropical northwest Pacific sea surface temperature on interannual variability of autumn precipitation in southwest China. Climate Dyn., 45, 25272539, https://doi.org/10.1007/s00382-015-2490-8.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and X. Yuan, 2021: Anthropogenic speeding up of South China flash droughts as exemplified by the 2019 summer–autumn transition season. Geophys. Res. Lett., 48, e2020GL091901, https://doi.org/10.1029/2020GL091901.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Wu, and T. Zhou, 2022: Maintenance of western North Pacific anomalous anticyclone in boreal summer by wind-induced moist enthalpy advection mechanism. J. Climate, 35, 44994511, https://doi.org/10.1175/JCLI-D-21-0708.1.

    • Search Google Scholar
    • Export Citation
  • Wilhite, D. A., and M. H. Glantz, 1985: Understanding: The drought phenomenon: The role of definitions. Water Int., 10, 111120, https://doi.org/10.1080/02508068508686328.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 96379650, https://doi.org/10.1175/JCLI-D-16-0495.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., Y. Kosaka, Y. Du, K. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Search Google Scholar
    • Export Citation
  • Xin, X., R. Yu, T. Zhou, and B. Wang, 2006: Drought in late spring of South China in recent decades. J. Climate, 19, 31973206, https://doi.org/10.1175/JCLI3794.1.

    • Search Google Scholar
    • Export Citation
  • Xu, K., H. Y. Miao, B. Liu, C. Y. Tam, and W. Wang, 2020: Aggravation of record‐breaking drought over the mid‐to‐lower reaches of the Yangtze River in the post‐monsoon season of 2019 by anomalous Indo‐Pacific Oceanic conditions. Geophys. Res. Lett., 47, e2020GL090847, https://doi.org/10.1029/2020GL090847.

    • Search Google Scholar
    • Export Citation
  • Yang, J., D. Gong, W. Wang, M. Hu, and R. Mao, 2012: Extreme drought event of 2009/2010 over southwestern China. Meteor. Atmos. Phys., 115, 173184, https://doi.org/10.1007/s00703-011-0172-6.

    • Search Google Scholar
    • Export Citation
  • Yu, M., Q. Li, M. J. Hayes, M. D. Svoboda, and R. R. Heim, 2014: Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol., 34, 545558, https://doi.org/10.1002/joc.3701.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 33753399, https://doi.org/10.1175/JCLI-D-14-00259.1.

  • Zhang, W., F.-F. Jin, J. Li, and H.-L. Ren, 2011: Contrasting impacts of two-type El Niño over western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563569, https://doi.org/10.2151/jmsj.2011-510.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, J.-X. Zhao, L. Qi, and H.-L. Ren, 2013: The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J. Climate, 26, 83928405, https://doi.org/10.1175/JCLI-D-12-00851.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., F.-F. Jin, and A. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41, 40204026, https://doi.org/10.1002/2014GL060130.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2020: Anthropogenic influence on 2018 summer persistent heavy rainfall in central western China. Bull. Amer. Meteor. Soc., 101 (1), S65S70, https://doi.org/10.1175/BAMS-D-19-0147.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., W. Mao, F. Jiang, M. F. Stuecker, F. F. Jin, and L. Qi, 2021: Tropical Indo-Pacific compounding thermal conditions drive the 2019 Australian extreme drought. Geophys. Res. Lett., 48, e2020GL090323, https://doi.org/10.1029/2020GL090323.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., and Coauthors, 2022a: The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 Arctic sea ice loss. Adv. Atmos. Sci., 39, 658672, https://doi.org/10.1007/s00376-021-1130-y.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., and Coauthors, 2022b: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., 39, 546552, https://doi.org/10.1007/s00376-021-1033-y.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173, https://doi.org/10.1175/2008JCLI2245.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Ren, and W. Zhang, 2021: Anthropogenic influence on extreme Meiyu rainfall in 2020 and its future risk. Sci. China Earth Sci., 64, 16331644, https://doi.org/10.1007/s11430-020-9771-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 668 668 81
Full Text Views 308 308 37
PDF Downloads 424 424 58

Causes of the Extreme Drought in Late Summer–Autumn 2019 in Eastern China and Its Future Risk

Lin ChenaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6651-4627
,
Yuqing LiaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yuqing Li in
Current site
Google Scholar
PubMed
Close
,
Zi-An GeaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Zi-An Ge in
Current site
Google Scholar
PubMed
Close
,
Bo LubLaboratory for Climate Studies and CMA-NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Bo Lu in
Current site
Google Scholar
PubMed
Close
,
Lu WangaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lu Wang in
Current site
Google Scholar
PubMed
Close
,
Xiaojun WeiaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaojun Wei in
Current site
Google Scholar
PubMed
Close
,
Ming SunaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Ming Sun in
Current site
Google Scholar
PubMed
Close
,
Ziyue WangaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Ziyue Wang in
Current site
Google Scholar
PubMed
Close
,
Tim LicInternational Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
aKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Tim Li in
Current site
Google Scholar
PubMed
Close
, and
Jing-Jia LuoaKey Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jing-Jia Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Eastern China (EC) suffered an extreme drought with long-lasting duration and record-breaking intensity in late summer–autumn 2019. Our diagnosed results show that the central Pacific (CP) El Niño, in tandem with warm sea surface temperature anomalies (SSTAs) over the Kuroshio Extension (KE) region, induces the meridionally elongated cyclonic circulation anomalies stretching from the western North Pacific (WNP) to the Yellow Sea. Its western flank corresponds to overwhelming low-level northerly wind anomalies over EC, which result in deficient moisture and anomalous descent over EC and hence cause the extreme drought in 2019. To investigate the relative contributions of SSTAs over different regions, we performed sensitivity experiments, and analyzed the relationship between extreme drought like what occurred in 2019 (a 2019Drought-like event) and the SSTAs in CMIP6 historical simulations. Modeling evidences reveal that both warm SSTAs over the central equatorial Pacific and the KE region are indispensable for shaping the meridionally elongated cyclone anomaly. Specifically, the cyclone anomaly over the WNP induced by CP El Niño aligns with the cyclone anomaly over the Yellow Sea induced by the warm SSTAs over the KE region, merging into a meridionally stretched cyclone anomaly to the east of EC. Consequently, the northerly anomalies stretch across EC, leading to unfavorable atmospheric conditions and the rainfall deficit there. Projection results show that the occurrence probability of a 2019Drought-like event will increase by 20% (decrease by 40%–50%) under a high (medium-low) emission scenario compared to present-day climate, indicating the nonlinear response of extreme drought to different emission scenarios and the urgency of carbon emission reduction.

Significance Statement

An extreme drought hit the Eastern China (EC) region in 2019 and caused tremendous losses. This study proposed that both the 2019 CP El Niño and the warm SST anomalies over the Kuroshio Extension (KE) region induce the meridionally elongated circulation anomalies and the resultant extreme drought. We showed that the typical circulation anomalies induced by central Pacific (CP) El Niño cannot totally explain the meridionally elongated circulation anomalies in 2019. Our modeling evidences confirmed the indispensable role of warm SST anomalies over KE region in the 2019 extreme drought’s formation. The projection results show that extreme drought like that in 2019 will occur more (less) frequently under a high (medium-low) emission scenario compared to modern-day level, indicating the urgency of carbon emission reduction.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Chen, chenlin@nuist.edu.cn

Abstract

Eastern China (EC) suffered an extreme drought with long-lasting duration and record-breaking intensity in late summer–autumn 2019. Our diagnosed results show that the central Pacific (CP) El Niño, in tandem with warm sea surface temperature anomalies (SSTAs) over the Kuroshio Extension (KE) region, induces the meridionally elongated cyclonic circulation anomalies stretching from the western North Pacific (WNP) to the Yellow Sea. Its western flank corresponds to overwhelming low-level northerly wind anomalies over EC, which result in deficient moisture and anomalous descent over EC and hence cause the extreme drought in 2019. To investigate the relative contributions of SSTAs over different regions, we performed sensitivity experiments, and analyzed the relationship between extreme drought like what occurred in 2019 (a 2019Drought-like event) and the SSTAs in CMIP6 historical simulations. Modeling evidences reveal that both warm SSTAs over the central equatorial Pacific and the KE region are indispensable for shaping the meridionally elongated cyclone anomaly. Specifically, the cyclone anomaly over the WNP induced by CP El Niño aligns with the cyclone anomaly over the Yellow Sea induced by the warm SSTAs over the KE region, merging into a meridionally stretched cyclone anomaly to the east of EC. Consequently, the northerly anomalies stretch across EC, leading to unfavorable atmospheric conditions and the rainfall deficit there. Projection results show that the occurrence probability of a 2019Drought-like event will increase by 20% (decrease by 40%–50%) under a high (medium-low) emission scenario compared to present-day climate, indicating the nonlinear response of extreme drought to different emission scenarios and the urgency of carbon emission reduction.

Significance Statement

An extreme drought hit the Eastern China (EC) region in 2019 and caused tremendous losses. This study proposed that both the 2019 CP El Niño and the warm SST anomalies over the Kuroshio Extension (KE) region induce the meridionally elongated circulation anomalies and the resultant extreme drought. We showed that the typical circulation anomalies induced by central Pacific (CP) El Niño cannot totally explain the meridionally elongated circulation anomalies in 2019. Our modeling evidences confirmed the indispensable role of warm SST anomalies over KE region in the 2019 extreme drought’s formation. The projection results show that extreme drought like that in 2019 will occur more (less) frequently under a high (medium-low) emission scenario compared to modern-day level, indicating the urgency of carbon emission reduction.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Chen, chenlin@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 2.83 MB)
Save