• Baker, A. J., and Coauthors, 2019: Enhanced climate change response of wintertime North Atlantic circulation, cyclonic activity, and precipitation in a 25-km-resolution global atmospheric model. J. Climate, 32, 77637781, https://doi.org/10.1175/JCLI-D-19-0054.1.

    • Search Google Scholar
    • Export Citation
  • Bodman, R. W., D. J. Karoly, M. R. Dix, I. N. Harman, J. Srbinovsky, P. B. Dobrohotoff, and C. Mackallah, 2020: Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model. J. South. Hemisphere Earth Syst. Sci., 70, 166179, https://doi.org/10.1071/ES19033.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., E. Dunn-Sigouin, and S. Pfahl, 2017a: The relationship between extratropical cyclone steering and blocking along the North American east coast. Geophys. Res. Lett., 44, 11 97611 984, https://doi.org/10.1002/2017GL075941.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., Y.-O. Kwon, S. Ko, R. J. Small, and R. Msadek, 2017b: Spatial patterns and intensity of the surface storm tracks in CMIP5 models. J. Climate, 30, 49654981, https://doi.org/10.1175/JCLI-D-16-0228.1.

    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., H. Lu, and J. I. Robson, 2021: Early-winter North Atlantic low-level jet latitude biases in climate models: Implications for simulated regional atmosphere-ocean linkages. Environ. Res. Lett., 17, 014025, https://doi.org/10.1088/1748-9326/ac417f.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, X. Xia, and M. Zheng, 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246260, https://doi.org/10.1175/JCLI-D-11-00707.1.

    • Search Google Scholar
    • Export Citation
  • Chassignet, E. P., and Coauthors, 2020: Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 45954637, https://doi.org/10.5194/gmd-13-4595-2020.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Liu, and G. Wu, 2017: Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 14471460, https://doi.org/10.1007/s00376-017-6326-9.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, https://doi.org/10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., S. A. Josey, and A. L. M. Grant, 2020: Extratropical-cyclone-induced sea surface temperature anomalies in the 2013–2014 winter. Wea. Climate Dyn., 1, 2744, https://doi.org/10.5194/wcd-1-27-2020.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2016: Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Climate, 29, 88238840, https://doi.org/10.1175/JCLI-D-16-0242.1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Search Google Scholar
    • Export Citation
  • Davini, P., F. Fabiano, and I. Sandu, 2022: Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes. Wea. Climate Dyn., 3, 535553, https://doi.org/10.5194/wcd-3-535-2022.

    • Search Google Scholar
    • Export Citation
  • de Vries, H., S. Scher, R. Haarsma, S. Drijfhout, and A. Delden, 2019: How Gulf-Stream SST-fronts influence Atlantic winter storms. Climate Dyn., 52, 58995909, https://doi.org/10.1007/s00382-018-4486-7.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., M. DéQué, F. Valero, and D. B. Stephenson, 1998: North Atlantic wintertime intraseasonal variability and its sensitivity to GCM horizontal resolution. Tellus, 50A, 573595, https://doi.org/10.3402/tellusa.v50i5.14560.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 2956, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., P. Cook, L. C. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hirata, H., R. Kawamura, M. Nonaka, and K. Tsuboki, 2019: Significant impact of heat supply from the Gulf Stream on a “superbomb” cyclone in January 2018. Geophys. Res. Lett., 46, 77187725, https://doi.org/10.1029/2019GL082995.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 25732586, https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1996: Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon. Wea. Rev., 124, 29142932, https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2019: The annual cycle of Northern Hemisphere storm tracks. Part I: Seasons. J. Climate, 32, 17431760, https://doi.org/10.1175/JCLI-D-17-0870.1.

    • Search Google Scholar
    • Export Citation
  • Iqbal, W., W.-N. Leung, and A. Hannachi, 2018: Analysis of the variability of the North Atlantic eddy-driven jet stream in CMIP5. Climate Dyn., 51, 235247, https://doi.org/10.1007/s00382-017-3917-1.

    • Search Google Scholar
    • Export Citation
  • Jiaxiang, G., and Coauthors, 2020: Influence of model resolution on bomb cyclones revealed by HighResMIP-PRIMAVERA simulations. Environ. Res. Lett., 15, 084001, https://doi.org/10.1088/1748-9326/ab88fa.

    • Search Google Scholar
    • Export Citation
  • Keeley, S. P. E., R. T. Sutton, and L. C. Shaffrey, 2012: The impact of North Atlantic sea surface temperature errors on the simulation of North Atlantic European region climate. Quart. J. Roy. Meteor. Soc., 138, 17741783, https://doi.org/10.1002/qj.1912.

    • Search Google Scholar
    • Export Citation
  • Kodama, C., and Coauthors, 2015: A 20-year climatology of a NICAM AMIP-type simulation. J. Meteor. Soc. Japan, 93, 393424, https://doi.org/10.2151/jmsj.2015-024.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., and I. M. Held, 1996: Equilibrium atmospheric response to North Atlantic SST anomalies. J. Climate, 9, 12081220, https://doi.org/10.1175/1520-0442(1996)009<1208:EARTNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, R. W., T. J. Woollings, B. J. Hoskins, K. D. Williams, C. H. O’Reilly, and G. Masato, 2018: Impact of Gulf Stream SST biases on the global atmospheric circulation. Climate Dyn., 51, 33693387, https://doi.org/10.1007/s00382-018-4083-9.

    • Search Google Scholar
    • Export Citation
  • Maddison, J. W., S. L. Gray, O. Martínez-Alvarado, and K. D. Williams, 2020: Impact of model upgrades on diabatic processes in extratropical cyclones and downstream forecast evolution. Quart. J. Roy. Meteor. Soc., 146, 13221350, https://doi.org/10.1002/qj.3739.

    • Search Google Scholar
    • Export Citation
  • Met Office, 2013: Iris: A Python library for analysing and visualising meteorological and oceanographic data sets v1.2 ed. https://scitools-iris.readthedocs.io/en/stable/.

  • O’Reilly, C. H., S. Minobe, and A. Kuwano-Yoshida, 2016: The influence of the Gulf Stream on wintertime European blocking. Climate Dyn., 47, 15451567, https://doi.org/10.1007/s00382-015-2919-0.

    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., S. Minobe, A. Kuwano-Yoshida, and T. Woollings, 2017: The Gulf Stream influence on wintertime North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 143, 173183, https://doi.org/10.1002/qj.2907.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Search Google Scholar
    • Export Citation
  • Pithan, F., T. G. Shepherd, G. Zappa, and I. Sandu, 2016: Climate model biases in jet streams, blocking and storm tracks resulting from missing orographic drag. Geophys. Res. Lett., 43, 72317240, https://doi.org/10.1002/2016GL069551.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., D. Ackerley, J. L. Catto, K. I. Hodges, R. E. McDonald, and R. W. Lee, 2020: An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Climate, 33, 63156343, https://doi.org/10.1175/JCLI-D-19-0928.1.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. D. K., D. Ackerley, J. L. Catto, and K. I. Hodges, 2023: Drivers of biases in the CMIP6 extratropical storm tracks. Part II: Southern Hemisphere. J. Climate, 36, 14691486, https://doi.org/10.1175/JCLI-D-20-0977.1.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett., 38, L23703, https://doi.org/10.1029/2011GL049573.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett., 20, e922, https://doi.org/10.1002/asl.922.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2017: The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Climate, 30, 337358, https://doi.org/10.1175/JCLI-D-16-0100.1.

    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2020: Northern Hemisphere blocking simulation in current climate models: Evaluating progress from the Climate Model Intercomparison Project Phase 5 to 6 and sensitivity to resolution. Wea. Climate Dyn., 1, 277292, https://doi.org/10.5194/wcd-1-277-2020.

    • Search Google Scholar
    • Export Citation
  • Steinfeld, D., and S. Pfahl, 2019: The role of latent heating in atmospheric blocking dynamics: A global climatology. Climate Dyn., 53, 61596180, https://doi.org/10.1007/s00382-019-04919-6.

    • Search Google Scholar
    • Export Citation
  • Steinfeld, D., M. Boettcher, R. Forbes, and S. Pfahl, 2020: The sensitivity of atmospheric blocking to upstream latent heating—Numerical experiments. Wea. Climate Dyn., 1, 405426, https://doi.org/10.5194/wcd-1-405-2020.

    • Search Google Scholar
    • Export Citation
  • Su, F., X. Duan, D. Chen, Z. Hao, and L. Cuo, 2013: Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 31873208, https://doi.org/10.1175/JCLI-D-12-00321.1.

    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2017: Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks. J. Atmos. Sci., 74, 553572, https://doi.org/10.1175/JAS-D-16-0122.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., and Coauthors, 2018: CMIP6 global attributes, DRS, filenames, directory structure, and CV’s v6.26. Program for Climate Model Diagnosis and Intercomparison Doc., 29 pp., http://goo.gl/v1drZl.

  • Tsujino, H., and Coauthors, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geosci. Model Dev., 13, 36433708, https://doi.org/10.5194/gmd-13-3643-2020.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., J. G. Pinto, H. Kupfer, G. C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations. J. Climate, 21, 16691679, https://doi.org/10.1175/2007JCLI1992.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C., L. Zhang, S.-K. Lee, L. Wu, and C. R. Mechoso, 2014: A global perspective on CMIP5 climate model biases. Nat. Climate Change, 4, 201205, https://doi.org/10.1038/nclimate2118.

    • Search Google Scholar
    • Export Citation
  • Willison, J., W. A. Robinson, and G. M. Lackmann, 2013: The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci., 70, 22342250, https://doi.org/10.1175/JAS-D-12-0226.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., B. Hoskins, M. Blackburn, D. Hassell, and K. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341353, https://doi.org/10.1007/s00382-009-0554-3.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. J. Climate, 26, 53795396, https://doi.org/10.1175/JCLI-D-12-00501.1.

    • Search Google Scholar
    • Export Citation
  • Zappa, G., G. Masato, L. Shaffrey, T. Woollings, and K. Hodges, 2014: Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys. Res. Lett., 41, 135139, https://doi.org/10.1002/2013GL058480.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and C. Zhao, 2015: Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: A link with the Atlantic meridional overturning circulation. J. Adv. Model. Earth Syst., 7, 739758, https://doi.org/10.1002/2014MS000415.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y.-Y., and S. Yang, 2020: Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Climate Change Res., 11, 239251, https://doi.org/10.1016/j.accre.2020.08.001.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1033 757 72
Full Text Views 500 391 32
PDF Downloads 645 508 36

Drivers of Biases in the CMIP6 Extratropical Storm Tracks. Part I: Northern Hemisphere

Matthew D. K. PriestleyaCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Matthew D. K. Priestley in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5488-3959
,
Duncan AckerleybMet Office, Exeter, United Kingdom

Search for other papers by Duncan Ackerley in
Current site
Google Scholar
PubMed
Close
,
Jennifer L. CattoaCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Jennifer L. Catto in
Current site
Google Scholar
PubMed
Close
, and
Kevin I. HodgescDepartment of Meteorology, University of Reading, Reading, United Kingdom
dNational Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Kevin I. Hodges in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability of climate models to represent extratropical storm tracks is vital to provide useful projections. In previous work, the representation of the extratropical storm tracks in the Northern Hemisphere was found to have improved from phase 5 to phase 6 of the Coupled Model Intercomparison Project (CMIP). Here we investigate the remaining and persistent biases in models from phase 6 of CMIP, by contrasting the atmosphere-only simulations (AMIP6) with the historical coupled simulations (CMIP6). The comparison of AMIP6 and CMIP6 simulations reveals that biases in sea surface temperatures (SSTs) in the coupled simulations across the North Pacific Ocean in winter modify the atmospheric temperature gradient, which is associated with an equatorward bias of the storm track. In the North Atlantic Ocean, cyclones do not propagate poleward enough in coupled simulations, which is partly driven by cold SSTs to the south of Greenland, decreasing the latent heat fluxes. In summer, excessive heating across central Asia and the Tibetan Plateau reduces the local baroclinicity, causing fewer cyclones to form and propagate from eastern China into the North Pacific in both the coupled and atmosphere-only simulations. Several of the biases described in the coupled models are reduced considerably in the atmosphere-only models when the SSTs are prescribed. For example, the equatorward bias of the North Pacific storm track is reduced significantly. However, other biases are apparent in both CMIP6 and AMIP6 (e.g., persistent reduction in track density and cyclogenesis over eastern Asia in summer), which are associated with other processes (e.g., land surface temperatures).

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Priestley, m.priestley@exeter.ac.uk

Abstract

The ability of climate models to represent extratropical storm tracks is vital to provide useful projections. In previous work, the representation of the extratropical storm tracks in the Northern Hemisphere was found to have improved from phase 5 to phase 6 of the Coupled Model Intercomparison Project (CMIP). Here we investigate the remaining and persistent biases in models from phase 6 of CMIP, by contrasting the atmosphere-only simulations (AMIP6) with the historical coupled simulations (CMIP6). The comparison of AMIP6 and CMIP6 simulations reveals that biases in sea surface temperatures (SSTs) in the coupled simulations across the North Pacific Ocean in winter modify the atmospheric temperature gradient, which is associated with an equatorward bias of the storm track. In the North Atlantic Ocean, cyclones do not propagate poleward enough in coupled simulations, which is partly driven by cold SSTs to the south of Greenland, decreasing the latent heat fluxes. In summer, excessive heating across central Asia and the Tibetan Plateau reduces the local baroclinicity, causing fewer cyclones to form and propagate from eastern China into the North Pacific in both the coupled and atmosphere-only simulations. Several of the biases described in the coupled models are reduced considerably in the atmosphere-only models when the SSTs are prescribed. For example, the equatorward bias of the North Pacific storm track is reduced significantly. However, other biases are apparent in both CMIP6 and AMIP6 (e.g., persistent reduction in track density and cyclogenesis over eastern Asia in summer), which are associated with other processes (e.g., land surface temperatures).

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Priestley, m.priestley@exeter.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 8.90 MB)
Save