Simulation of African Easterly Waves in a Global Climate Model

Xianan Jiang aJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California
bJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Xianan Jiang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6010-0527
,
Hui Su aJoint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, California
cDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California

Search for other papers by Hui Su in
Current site
Google Scholar
PubMed
Close
,
Shuyi S. Chen dDepartment of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Shuyi S. Chen in
Current site
Google Scholar
PubMed
Close
, and
Paul A. Ullrich eDepartment of Land, Air, and Water Resources, University of California, Davis, Davis, California

Search for other papers by Paul A. Ullrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

African easterly waves (AEWs) exert significant influence on local and downstream high-impact weather including tropical cyclone (TC) genesis over the Atlantic. Accurate representation of AEWs in climate and weather prediction models therefore is necessary for skillful predictions. In this study, we examine simulated AEWs, including their evolution, vertical structure, and linkage to tropical cyclone genesis, in the NASA Goddard Earth Observing System Model, version 5 (GEOS-5) atmospheric global climate model. Identified by the leading empirical orthogonal function mode of time-filtered precipitation, the observed westward propagating AEWs along the southern track over the Atlantic are largely captured in GEOS-5, but with a slower phase speed and significantly weaker amplitude downstream off the West Africa coast. The weak downstream development of AEWs in GEOS-5 is accompanied by much reduced TC genesis over the main development region. Further analyses suggest that the slow westward propagation and weaker AEW amplitude downstream can be ascribed to a weak African easterly jet, while overestimated negative (positive) meridional potential vorticity (PV) gradients appear to the north (south) of 10°N in GEOS-5. The greatly overestimated positive meridional PV gradient to the south of 10°N is expected to generate strong horizontal stretching in the AEW wave pattern in the model, which hinders organization of convection and its feedback to sustain the AEW development. Persistent and vigorous AEW precipitation in the Guinea Highlands of the West Africa coast could also be responsible for reduced westward propagation of AEWs in the model.

Su’s current affiliation: Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong, China.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianan Jiang, xianan@ucla.edu

Abstract

African easterly waves (AEWs) exert significant influence on local and downstream high-impact weather including tropical cyclone (TC) genesis over the Atlantic. Accurate representation of AEWs in climate and weather prediction models therefore is necessary for skillful predictions. In this study, we examine simulated AEWs, including their evolution, vertical structure, and linkage to tropical cyclone genesis, in the NASA Goddard Earth Observing System Model, version 5 (GEOS-5) atmospheric global climate model. Identified by the leading empirical orthogonal function mode of time-filtered precipitation, the observed westward propagating AEWs along the southern track over the Atlantic are largely captured in GEOS-5, but with a slower phase speed and significantly weaker amplitude downstream off the West Africa coast. The weak downstream development of AEWs in GEOS-5 is accompanied by much reduced TC genesis over the main development region. Further analyses suggest that the slow westward propagation and weaker AEW amplitude downstream can be ascribed to a weak African easterly jet, while overestimated negative (positive) meridional potential vorticity (PV) gradients appear to the north (south) of 10°N in GEOS-5. The greatly overestimated positive meridional PV gradient to the south of 10°N is expected to generate strong horizontal stretching in the AEW wave pattern in the model, which hinders organization of convection and its feedback to sustain the AEW development. Persistent and vigorous AEW precipitation in the Guinea Highlands of the West Africa coast could also be responsible for reduced westward propagation of AEWs in the model.

Su’s current affiliation: Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong, China.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xianan Jiang, xianan@ucla.edu
Save
  • Aarons, Z. S., S. J. Camargo, J. D. O. Strong, and H. Murakami, 2021: Tropical cyclone characteristics in the MERRA-2 reanalysis and AMIP simulations. Earth Space Sci., 8, e2020EA001415, https://doi.org/10.1029/2020EA001415.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and J. D. Neelin, 2018: Reverse engineering the tropical precipitation–buoyancy relationship. J. Atmos. Sci., 75, 15871608, https://doi.org/10.1175/JAS-D-17-0333.1.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and J. D. Neelin, 2021: A process-oriented diagnostic to assess precipitation–thermodynamic relations and application to CMIP6 models. Geophys. Res. Lett., 48, e2021GL094108, https://doi.org/10.1029/2021GL094108.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., Á. F. Adames, and J. D. Neelin, 2020: Deep convective adjustment of temperature and moisture. J. Atmos. Sci., 77, 21632186, https://doi.org/10.1175/JAS-D-19-0227.1.

    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., Jr., and E. D. Maloney, 2012: The influence of the MJO on upstream precursors to African easterly waves. J. Climate, 25, 32193236, https://doi.org/10.1175/JCLI-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Albignat, J. P., and R. J. Reed, 1980: The origin of African wave disturbances during phase III of GATE. Mon. Wea. Rev., 108, 18271839, https://doi.org/10.1175/1520-0493(1980)108<1827:TOOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., R. J. Pasch, and J.-G. Jiing, 2000: Atlantic tropical systems of 1996 and 1997: Years of contrasts. Mon. Wea. Rev., 128, 36953706, https://doi.org/10.1175/1520-0493(2000)128<3695:ATSOAY>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., and G. L. Stephens, 2011: Spatial statistics of likely convective clouds in CloudSat data. J. Geophys. Res., 116, D04104, https://doi.org/10.1029/2010JD014444.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., and C. M. Patricola, 2021: Anthropogenic influences on the African easterly jet–African easterly wave system. Climate Dyn., 57, 27792792, https://doi.org/10.1007/s00382-021-05838-1.

    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Search Google Scholar
    • Export Citation
  • Brannan, A. L., and E. R. Martin, 2019: Future characteristics of African easterly wave tracks. Climate Dyn., 52, 55675584, https://doi.org/10.1007/s00382-018-4465-z.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: The origin and structure of easterly waves in the lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1974: Characteristics of North African easterly waves during the summers of 1968 and 1969. J. Atmos. Sci., 31, 15561570, https://doi.org/10.1175/1520-0469(1974)031<1556:CONAEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Synoptic histories of three African disturbances that developed into Atlantic hurricanes. Mon. Wea. Rev., 97, 256276, https://doi.org/10.1175/1520-0493(1969)097<0256:SHOTAD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/BAMS-87-7-911.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-Y. Wang, and A. J. Clark, 2008: North Atlantic hurricanes contributed by African easterly waves north and south of the African easterly jet. J. Climate, 21, 67676776, https://doi.org/10.1175/2008JCLI2523.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y.-M., C. D. Thorncroft, and G. N. Kiladis, 2019: Two contrasting African easterly wave behaviors. J. Atmos. Sci., 76, 17531768, https://doi.org/10.1175/JAS-D-18-0300.1.

    • Search Google Scholar
    • Export Citation
  • Collow, A. B. M., S. P. Mahanama, M. G. Bosilovich, R. D. Koster, and S. D. Schubert, 2017: An evaluation of teleconnections of the United States in an ensemble of AMIP simulations with the MERRA-2 configuration of the GEOS atmospheric model. NASA Tech. Rep. NASA/TM-2017-104606/Vol. 47, 78 pp., https://gmao.gsfc.nasa.gov/pubs/docs/Collow963.pdf.

  • Crétat, J., E. K. Vizy, and K. H. Cook, 2015: The relationship between African easterly waves and daily rainfall over West Africa: Observations and regional climate simulations. Climate Dyn., 44, 385404, https://doi.org/10.1007/s00382-014-2120-x.

    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., F. Chauvin, K. Walsh, S. Lavender, D. Abbs, and F. Roux, 2012: The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region. Climate Dyn., 39, 15591576, https://doi.org/10.1007/s00382-012-1290-7.

    • Search Google Scholar
    • Export Citation
  • Dickinson, M., and J. Molinari, 2000: Climatology of sign reversals of the meridional potential vorticity gradient over Africa and Australia. Mon. Wea. Rev., 128, 38903900, https://doi.org/10.1175/1520-0493(2001)129<3890:COSROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, P. de Felice, and H. Laurent, 1999: Easterly wave regimes and associated convection over West Africa and tropical Atlantic: Results from the NCEP/NCAR and ECMWF reanalyses. Climate Dyn., 15, 795822, https://doi.org/10.1007/s003820050316.

    • Search Google Scholar
    • Export Citation
  • Diedhiou, A., S. Janicot, A. Viltard, and P. de Félice, 2002: Energetics of easterly wave disturbances over West Africa and the tropical Atlantic: A climatology from the 1979–95 NCEP/NCAR reanalyses. Climate Dyn., 18, 487500, https://doi.org/10.1007/s00382-001-0195-7.

    • Search Google Scholar
    • Export Citation
  • Dieng, A. L., S. M. Sall, L. Eymard, M. Leduc-Leballeur, and A. Lazar, 2017: Trains of African easterly waves and their relationship to tropical cyclone genesis in the eastern Atlantic. Mon. Wea. Rev., 145, 599616, https://doi.org/10.1175/MWR-D-15-0277.1.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., 1990: Convection over tropical Africa and the Atlantic Ocean during northern summer. Part II: Modulation by easterly waves. Mon. Wea. Rev., 118, 18551868, https://doi.org/10.1175/1520-0493(1990)118<1855:COTAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elless, T. J., and R. D. Torn, 2018: African easterly wave forecast verification and its relation to convective errors within the ECMWF ensemble prediction system. Wea. Forecasting, 33, 461477, https://doi.org/10.1175/WAF-D-17-0130.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2022: Tropical cyclone seeds, transition probabilities, and genesis. J. Climate, 35, 35573566, https://doi.org/10.1175/JCLI-D-21-0922.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.

    • Search Google Scholar
    • Export Citation
  • Frank, N. L., 1970: Atlantic tropical systems of 1969. Mon. Wea. Rev., 98, 307314, https://doi.org/10.1175/1520-0493(1970)098<0307:ATSO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., 2002: Easterly waves over Africa. Part I: The seasonal cycle and contrasts between wet and dry years. Mon. Wea. Rev., 130, 197211, https://doi.org/10.1175/1520-0493(2002)130<0197:EWOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grogan, D. F. P., T. R. Nathan, and S.-H. Chen, 2016: Effects of Saharan dust on the linear dynamics of African easterly waves. J. Atmos. Sci., 73, 891911, https://doi.org/10.1175/JAS-D-15-0143.1.

    • Search Google Scholar
    • Export Citation
  • Gu, G., R. F. Adler, G. J. Huffman, and S. Curtis, 2004: African easterly waves and their association with precipitation. J. Geophys. Res., 109, D04101, https://doi.org/10.1029/2003JD003967.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., G. N. Kiladis, and C. D. Thorncroft, 2006: Three-dimensional structure and dynamics of African easterly waves. Part II: Dynamical modes. J. Atmos. Sci., 63, 22312245, https://doi.org/10.1175/JAS3742.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hopsch, S. B., C. D. Thorncroft, K. Hodges, and A. Aiyyer, 2007: West African storm tracks and their relationship to Atlantic tropical cyclones. J. Climate, 20, 24682483, https://doi.org/10.1175/JCLI4139.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2005: Generation of African easterly wave disturbances: Relationship to the African easterly jet. Mon. Wea. Rev., 133, 13111327, https://doi.org/10.1175/MWR2916.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2007: A study of the energetics of African easterly waves using a regional climate model. J. Atmos. Sci., 64, 421440, https://doi.org/10.1175/JAS3851.1.

    • Search Google Scholar
    • Export Citation
  • Hsieh, J.-S., and K. H. Cook, 2008: On the instability of the African easterly jet and the generation of African waves: Reversals of the potential vorticity gradient. J. Atmos. Sci., 65, 21302151, https://doi.org/10.1175/2007JAS2552.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. NASA Tech. Doc., 77 pp., https://gpm.nasa.gov/sites/default/files/document_files/IMERG_doc_190909.pdf.

  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, https://doi.org/10.1002/qj.2047.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2014: Convection over tropical Africa and the east Atlantic during the West African monsoon: Regional and diurnal variability. J. Climate, 27, 41594188, https://doi.org/10.1175/JCLI-D-13-00449.1.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2016: The influence of African easterly waves on convection over tropical Africa and the east Atlantic. Mon. Wea. Rev., 144, 171192, https://doi.org/10.1175/MWR-D-14-00419.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., M. Zhao, and D. E. Waliser, 2012: Modulation of tropical cyclones over the eastern Pacific by the intraseasonal variability simulated in an AGCM. J. Climate, 25, 65246538, https://doi.org/10.1175/JCLI-D-11-00531.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., B. Xiang, M. Zhao, T. Li, S.-J. Lin, Z. Wang, and J.-H. Chen, 2018: Intraseasonal tropical cyclogenesis prediction in a global coupled model system. J. Climate, 31, 62096227, https://doi.org/10.1175/JCLI-D-17-0454.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., H. Su, and D. E. Waliser, 2019: A damping effect of the Maritime Continent for the Madden–Julian oscillation. J. Geophys. Res. Atmos., 124, 13 69313 713, https://doi.org/10.1029/2019JD031503.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. J. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 2017: A multi-scale analysis of the extreme rain event of Ouagadougou in 2009. Quart. J. Roy. Meteor. Soc., 143, 30943109, https://doi.org/10.1002/qj.3165.

    • Search Google Scholar
    • Export Citation
  • Laing, A. G., R. Carbone, V. Levizzani, and J. Tuttle, 2008: The propagation and diurnal cycles of deep convection in northern tropical Africa. Quart. J. Roy. Meteor. Soc., 134, 93109, https://doi.org/10.1002/qj.194.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., 1993: A climatology of intense (or major) Atlantic hurricanes. Mon. Wea. Rev., 121, 17031713, https://doi.org/10.1175/1520-0493(1993)121<1703:ACOIMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and W. M. Gray, 1992: The strong association between western Sahelian monsoon rainfall and intense Atlantic hurricanes. J. Climate, 5, 435453, https://doi.org/10.1175/1520-0442(1992)005<0435:TSABWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 18881913, https://doi.org/10.1175/1520-0493(1990)118<1888:OSAPCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lavender, S. L., and A. J. Matthews, 2009: Response of the West African monsoon to the Madden–Julian oscillation. J. Climate, 22, 40974116, https://doi.org/10.1175/2009JCLI2773.1.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199, https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., J. P. Duvel, and M. Desbois, 1993: Diurnal variations and modulation by easterly waves of the size distribution of convective cloud clusters over West Africa and the Atlantic Ocean. Mon. Wea. Rev., 121, 3749, https://doi.org/10.1175/1520-0493(1993)121<0037:DVAMBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mantripragada, R. S. S., C. J. Schreck, and A. Aiyyer, 2021: Energetics of interactions between African easterly waves and convectively coupled Kelvin waves. Mon. Wea. Rev., 149, 38213835, https://doi.org/10.1175/MWR-D-21-0003.1.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Thorncroft, 2015: Representation of African easterly waves in CMIP5 models. J. Climate, 28, 77027715, https://doi.org/10.1175/JCLI-D-15-0145.1.

    • Search Google Scholar
    • Export Citation
  • McCrary, R. R., D. A. Randall, and C. Stan, 2014: Simulations of the West African monsoon with a superparameterized climate model. Part II: African easterly waves. J. Climate, 27, 83238341, https://doi.org/10.1175/JCLI-D-13-00677.1.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, A. R. Aiyyer, and G. N. Kiladis, 2008: Convectively coupled Kelvin waves over tropical Africa during the boreal summer: Structure and variability. J. Climate, 21, 66496667, https://doi.org/10.1175/2008JCLI2008.1.

    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mounier, F., G. N. Kiladis, and S. Janicot, 2007: Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J. Climate, 20, 14871503, https://doi.org/10.1175/JCLI4059.1.

    • Search Google Scholar
    • Export Citation
  • Mounier, F., S. Janicot, and G. N. Kiladis, 2008: The West African monsoon dynamics. Part III: The quasi-biweekly zonal dipole. J. Climate, 21, 19111928, https://doi.org/10.1175/2007JCLI1706.1.

    • Search Google Scholar
    • Export Citation
  • Norquist, D. C., E. E. Recker, and R. J. Reed, 1977: The energetics of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 334342, https://doi.org/10.1175/1520-0493(1977)105<0334:TEOAWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys. Res. Lett., 45, 471479, https://doi.org/10.1002/2017GL076081.

    • Search Google Scholar
    • Export Citation
  • Pytharoulis, I., and C. Thorncroft, 1999: The low-level structure of African easterly waves in 1995. Mon. Wea. Rev., 127, 22662280, https://doi.org/10.1175/1520-0493(1999)127<2266:TLLSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., A. Hollingsworth, W. A. Heckley, and F. Delsol, 1988: An evaluation of the performance of the ECMWF operational system in analyzing and forecasting easterly wave disturbances over Africa and the tropical Atlantic. Mon. Wea. Rev., 116, 824865, https://doi.org/10.1175/1520-0493(1988)116<0824:AEOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1976: The generation of African waves. J. Atmos. Sci., 33, 19551969, https://doi.org/10.1175/1520-0469(1976)033<1955:TGOAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Russell, J. O. H., and A. Aiyyer, 2020: The potential vorticity structure and dynamics of African easterly waves. J. Atmos. Sci., 77, 871890, https://doi.org/10.1175/JAS-D-19-0019.1.

    • Search Google Scholar
    • Export Citation
  • Russell, J. O. H., A. Aiyyer, J. D. White, and W. Hannah, 2017: Revisiting the connection between African easterly waves and Atlantic tropical cyclogenesis. Geophys. Res. Lett., 44, 587595, https://doi.org/10.1002/2016GL071236.

    • Search Google Scholar
    • Export Citation
  • Russell, J. O. H., A. Aiyyer, and J. D. White, 2020: African easterly wave dynamics in convection-permitting simulations: Rotational stratiform instability as a conceptual model. J. Adv. Model. Earth Syst., 12, e2019MS001706, https://doi.org/10.1029/2019MS001706.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., P. E. Ciesielski, D. E. Stevens, and H.-C. Kuo, 1991: Potential vorticity modeling of the ITCZ and the Hadley circulation. J. Atmos. Sci., 48, 14931509, https://doi.org/10.1175/1520-0469(1991)048<1493:PVMOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2013: The contribution of African easterly waves to monsoon precipitation in the CMIP3 ensemble. J. Geophys. Res. Atmos., 118, 35903609, https://doi.org/10.1002/jgrd.50363.

    • Search Google Scholar
    • Export Citation
  • Sultan, B., S. Janicot, and A. Diedhiou, 2003: The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16, 33893406, https://doi.org/10.1175/1520-0442(2003)016<3389:TWAMDP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and B. J. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, https://doi.org/10.1002/qj.49712051809.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and K. Hodges, 2001: African easterly wave variability and its relationship to Atlantic tropical cyclone activity. J. Climate, 14, 11661179, https://doi.org/10.1175/1520-0442(2001)014<1166:AEWVAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., N. M. J. Hall, and G. N. Kiladis, 2008: Three-dimensional structure and dynamics of African easterly waves. Part III: Genesis. J. Atmos. Sci., 65, 35963607, https://doi.org/10.1175/2008JAS2575.1.

    • Search Google Scholar
    • Export Citation
  • Tian, B., E. J. Fetzer, B. H. Kahn, J. Teixeira, E. Manning, and T. Hearty, 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114134, https://doi.org/10.1029/2012JD018607.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., 2018: Mesoscale circulations and organized convection in African easterly waves. J. Atmos. Sci., 75, 43574381, https://doi.org/10.1175/JAS-D-18-0183.1.

    • Search Google Scholar
    • Export Citation
  • Tomassini, L., D. J. Parker, A. Stirling, C. Bain, C. Senior, and S. Milton, 2017: The interaction between moist diabatic processes and the atmospheric circulation in African easterly wave propagation. Quart. J. Roy. Meteor. Soc., 143, 32073227, https://doi.org/10.1002/qj.3173.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., 2010: Ensemble-based sensitivity analysis applied to African easterly waves. Wea. Forecasting, 25, 6178, https://doi.org/10.1175/2009WAF2222255.1.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 10691090, https://doi.org/10.5194/gmd-10-1069-2017.

    • Search Google Scholar
    • Export Citation
  • Ullrich, P. A., C. M. Zarzycki, E. E. McClenny, M. C. Pinheiro, A. M. Stansfield, and K. A. Reed, 2021: TempestExtremes v2.1: A community framework for feature detection, tracking, and analysis in large datasets. Geosci. Model Dev., 14, 50235048, https://doi.org/10.5194/gmd-14-5023-2021.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and P. E. Roundy, 2011: The Madden–Julian oscillation’s influence on African easterly waves and downstream tropical cyclogenesis. Mon. Wea. Rev., 139, 27042722, https://doi.org/10.1175/MWR-D-10-05028.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and C. J. Schreck, 2012a: Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon. Wea. Rev., 140, 21982214, https://doi.org/10.1175/MWR-D-11-00305.1.

    • Search Google Scholar
    • Export Citation
  • Ventrice, M. J., C. D. Thorncroft, and M. A. Janiga, 2012b: Atlantic tropical cyclogenesis: A three-way interaction between an African easterly Wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon. Wea. Rev., 140, 11081124, https://doi.org/10.1175/MWR-D-11-00122.1.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., J. Methven, S. Woolnough, K. Hodges, and B. Hoskins, 2018: Linking African easterly wave activity with equatorial waves and the influence of Rossby waves from the Southern Hemisphere. J. Atmos. Sci., 75, 17831809, https://doi.org/10.1175/JAS-D-17-0184.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and P. A. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 11411149, https://doi.org/10.1002/2016GL071606.

    • Search Google Scholar
    • Export Citation
  • Zhao, H., X. Jiang, and L. Wu, 2016: Boreal summer synoptic-scale waves over the western North Pacific in multimodel simulations. J. Climate, 29, 44874508, https://doi.org/10.1175/JCLI-D-15-0696.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 529 401 39
Full Text Views 264 220 63
PDF Downloads 260 204 35