Indonesian Throughflow Slowdown under Global Warming: Remote AMOC Effect versus Regional Surface Forcing

Qihua Peng aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Qihua Peng in
Current site
Google Scholar
PubMed
Close
,
Shang-Ping Xie aScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Shang-Ping Xie in
Current site
Google Scholar
PubMed
Close
,
Rui Xin Huang bWoods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Rui Xin Huang in
Current site
Google Scholar
PubMed
Close
,
Weiqiang Wang cState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Weiqiang Wang in
Current site
Google Scholar
PubMed
Close
,
Tingting Zu cState Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Tingting Zu in
Current site
Google Scholar
PubMed
Close
, and
Dongxiao Wang dGuangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, and School of Marine Science, Sun Yat-Sen University, Guangzhou, China
eSouthern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

Search for other papers by Dongxiao Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Indonesian Throughflow (ITF) is projected to slow down under anthropogenic warming. Several mechanisms—some mutually conflicting—have been proposed but the detailed processes causing this slowdown remain unclear. By turning on/off buoyancy and wind forcings globally and in key regions, this study investigates the dynamical adjustments underlying the centennial ITF slowdown in the global oceans and climate models. Our results show that the projected weakened ITF transport in the top 1500 m is dominated by remote anomalous buoyancy forcing in the North Atlantic Ocean. Specifically, surface freshening and warming over the North Atlantic Ocean slow the Atlantic meridional overturning circulation (AMOC), and the resultant dynamic signals propagate through the coastal-equatorial waveguide into the southeastern Indian Ocean and western Pacific Ocean, causing the reduction of ITF transport over a deep layer. In contrast, the anomalous surface buoyancy flux in the Indo-Pacific affects the ocean temperature and salinity in a shallow upper layer, resulting in ITF changes in forms of high baroclinic mode structure with negligible impacts on the net ITF transport. A vertical partitioning index is proposed to distinguish the remote forcing via the AMOC and regional forcing in the Indo-Pacific Ocean, which could be useful for monitoring, attributing, and predicting the changing ITF transport under global warming.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn

Abstract

The Indonesian Throughflow (ITF) is projected to slow down under anthropogenic warming. Several mechanisms—some mutually conflicting—have been proposed but the detailed processes causing this slowdown remain unclear. By turning on/off buoyancy and wind forcings globally and in key regions, this study investigates the dynamical adjustments underlying the centennial ITF slowdown in the global oceans and climate models. Our results show that the projected weakened ITF transport in the top 1500 m is dominated by remote anomalous buoyancy forcing in the North Atlantic Ocean. Specifically, surface freshening and warming over the North Atlantic Ocean slow the Atlantic meridional overturning circulation (AMOC), and the resultant dynamic signals propagate through the coastal-equatorial waveguide into the southeastern Indian Ocean and western Pacific Ocean, causing the reduction of ITF transport over a deep layer. In contrast, the anomalous surface buoyancy flux in the Indo-Pacific affects the ocean temperature and salinity in a shallow upper layer, resulting in ITF changes in forms of high baroclinic mode structure with negligible impacts on the net ITF transport. A vertical partitioning index is proposed to distinguish the remote forcing via the AMOC and regional forcing in the Indo-Pacific Ocean, which could be useful for monitoring, attributing, and predicting the changing ITF transport under global warming.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dongxiao Wang, dxwang@scsio.ac.cn
Save
  • Brandt, P., M. Claus, R. J. Greatbatch, R. Kopte, J. M. Toole, W. E. Johns, and C. W. Boning, 2016: Annual and semiannual cycle of equatorial Atlantic circulation associated with basin-mode resonance. J. Phys. Oceanogr., 46, 30113029, https://doi.org/10.1175/JPO-D-15-0248.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., K. Bryan, and R. Zhang, 2004: Global seiching of thermocline waters between the Atlantic and the Indian-Pacific Ocean basins. Geophys. Res. Lett., 31, L04302, https://doi.org/10.1029/2003GL019091.

    • Search Google Scholar
    • Export Citation
  • Chen, C., G. Wang, S.-P. Xie, and W. Liu, 2019: Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Climate, 32, 74377451, https://doi.org/10.1175/JCLI-D-18-0895.1.

    • Search Google Scholar
    • Export Citation
  • Chen, G., D. Wang, W. Han, M. Feng, F. Wang, Y. Li, J. Chen, and A. L. Gordon, 2020: The extreme El Niño events suppressing the intraseasonal variability in the eastern tropical Indian Ocean. J. Phys. Oceanogr., 50, 23592372, https://doi.org/10.1175/JPO-D-20-0041.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. A. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444, https://doi.org/10.1175/JCLI3322.1.

    • Search Google Scholar
    • Export Citation
  • Feng, M., X. Zhang, B. Sloyan, and M. Chamberlain, 2017: Contribution of the deep ocean to the centennial changes of the Indonesian Throughflow. Geophys. Res. Lett., 44, 28592867, https://doi.org/10.1002/2017GL072577.

    • Search Google Scholar
    • Export Citation
  • Feng, M., N. Zhang, Q. Liu, and S. Wijffels, 2018: The Indonesian Throughflow, its variability and centennial change. Geosci. Lett., 5, 3, https://doi.org/10.1186/s40562-018-0102-2.

    • Search Google Scholar
    • Export Citation
  • Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015: ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev., 8, 30713104, https://doi.org/10.5194/gmd-8-3071-2015.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., 1989: A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys. Astrophys. Fluid Dyn., 45, 89112, https://doi.org/10.1080/03091928908208894.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. A. Fine, 1996: Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature, 379, 146149, https://doi.org/10.1038/379146a0.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2016: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geosci. Model Dev., 9, 39934017, https://doi.org/10.5194/gmd-9-3993-2016.

    • Search Google Scholar
    • Export Citation
  • Hu, A., G. A. Meehl, N. Rosenbloom, M. J. Molina, and W. S. Strand, 2021: The influence of variability in meridional overturning on global ocean circulation. J. Climate, 34, 76977716, https://doi.org/10.1175/JCLI-D-21-0119.1.

    • Search Google Scholar
    • Export Citation
  • Hu, S., and J. Sprintall, 2016: Interannual variability of the Indonesian Throughflow: The salinity effect. J. Geophys. Res. Oceans, 121, 25962615, https://doi.org/10.1002/2015JC011495.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., M. A. Cane, N. Naik, and P. Goodman, 2000: Global adjustment of the thermocline in response to deepwater formation. Geophys. Res. Lett., 27, 759762, https://doi.org/10.1029/1999GL002365.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and D. P. Marshall, 2002: A theory for the surface Atlantic response to thermohaline variability. J. Phys. Oceanogr., 32, 11211132, https://doi.org/10.1175/1520-0485(2002)032<1121:ATFTSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawase, M., 1987: Establishment of deep ocean circulation driven by deep-water production. J. Phys. Oceanogr., 17, 22942317, https://doi.org/10.1175/1520-0485(1987)017<2294:EODOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kleinen, T., T. J. Osborn, and K. R. Briffa, 2009: Sensitivity of climate response to variations in freshwater hosing location. Ocean Dyn., 59, 509521, https://doi.org/10.1007/s10236-009-0189-2.

    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., R. J. Stouffer, S. M. Griffies, R. W. Hallberg, S. L. Malyshev, B. L. Samuels, and L. T. Sentman, 2018: Role of ocean model formulation in climate response uncertainty. J. Climate, 31, 93139333, https://doi.org/10.1175/JCLI-D-18-0035.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., D. Wang, W. Zhou, Q. Xie, and Y. Zhang, 2010: Covariation of the Indonesian Throughflow and South China Sea Throughflow associated with the 1976/77 regime shift. Adv. Atmos. Sci., 27, 87, https://doi.org/10.1007/s00376-009-8061-3.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., M. Feng, D. X. Wang, and S. Wijffels, 2015: Interannual variability of the Indonesian Throughflow transport: A revisit based on 30-year expendable bathythermograph data. J. Geophys. Res. Oceans, 120, 82708282, https://doi.org/10.1002/2015JC011351.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño–Southern oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., L. J. Pratt, M. A. Spall, and K. R. Helfrich, 1997: Circulation around islands and ridges. J. Mar. Res., 55, 11991251, https://doi.org/10.1357/0022240973224085.

    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, X.-T. Zheng, and H. Zhang, 2019: Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun., 10, 298, https://doi.org/10.1038/s41467-018-08258-8.

    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, Y. Kamae, H. Zhang, S. Hu, X.-T. Zheng, and W. Wang, 2020: Eastern Pacific wind effect on the evolution of El Niño: Implications for ENSO diversity. J. Climate, 33, 31973211, https://doi.org/10.1175/JCLI-D-19-0435.1.

    • Search Google Scholar
    • Export Citation
  • Peng, Q., S.-P. Xie, D. Wang, R. X. Huang, G. Chen, Y. Shu, J.-R. Shi, and W. Liu, 2022: Surface warming-induced global acceleration of upper ocean currents. Sci. Adv., 8, eabj8394, https://doi.org/10.1126/sciadv.abj8394.

    • Search Google Scholar
    • Export Citation
  • Qin, H. L., R. X. Huang, W. Wang, and H. J. Xue, 2016: Regulation of South China Sea Throughflow by pressure difference. J. Geophys. Res. Oceans, 121, 40774096, https://doi.org/10.1002/2015JC011177.

    • Search Google Scholar
    • Export Citation
  • Rugenstein, M., and Coauthors, 2019: LongRunMIP: Motivation and design for a large collection of millennial-length AOGCM Simulations. Bull. Amer. Meteor. Soc., 100, 25512570, https://doi.org/10.1175/BAMS-D-19-0068.1.

    • Search Google Scholar
    • Export Citation
  • Schiller, A., S. E. Wijffels, J. Sprintall, R. Molcard, and P. R. Oke, 2010: Pathways of intraseasonal variability in the Indonesian Throughflow region. Dyn. Atmos. Oceans, 50, 174200, https://doi.org/10.1016/j.dynatmoce.2010.02.003.

    • Search Google Scholar
    • Export Citation
  • Schneider, N., 1998: The Indonesian Throughflow and the global climate system. J. Climate, 11, 676689, https://doi.org/10.1175/1520-0442(1998)011<0676:TITATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., S. McGregor, E. van Sebille, A. Ganachaud, J. N. Brown, and A. Santoso, 2016: Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophys. Res. Lett., 43, 16691678, https://doi.org/10.1002/2016GL067757.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., A. Stellema, G. M. Pontes, A. S. Taschetto, A. Verges, and V. Rossi, 2021: Future changes to the upper ocean western boundary currents across two generations of climate models. Sci. Rep., 11, 9538, https://doi.org/10.1038/s41598-021-88934-w.

    • Search Google Scholar
    • Export Citation
  • Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nat. Climate Change, 7, 604610, https://doi.org/10.1038/nclimate3353.

    • Search Google Scholar
    • Export Citation
  • Shi, J.-R., S.-P. Xie, and L. D. Talley, 2018: Evolving relative importance of the Southern Ocean and North Atlantic in anthropogenic ocean heat uptake. J. Climate, 31, 74597479, https://doi.org/10.1175/JCLI-D-18-0170.1.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and A. Révelard, 2014: The Indonesian Throughflow response to Indo-Pacific climate variability. J. Geophys. Res. Oceans, 119, 11611175, https://doi.org/10.1002/2013JC009533.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., S. E. Wijffels, R. Molcard, and I. Jaya, 2009: Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J. Geophys. Res., 114, C07001, https://doi.org/10.1029/2008JC005257.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and Coauthors, 2019: Detecting change in the Indonesian seas. Front. Mar. Sci., 6, 257, https://doi.org/10.3389/fmars.2019.00257.

    • Search Google Scholar
    • Export Citation
  • Stouffer, R. J., and S. Manabe, 1999: Response of a coupled ocean–atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase. J. Climate, 12, 22242237, https://doi.org/10.1175/1520-0442(1999)012<2224:ROACOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and A. F. Thompson, 2020: Centennial changes in the Indonesian Throughflow connected to the Atlantic meridional overturning circulation: The ocean’s transient conveyor belt. Geophys. Res. Lett., 47, e2020GL090615, https://doi.org/10.1029/2020GL090615.

    • Search Google Scholar
    • Export Citation
  • Tillinger, D., and A. L. Gordon, 2009: Fifty years of the Indonesian Throughflow. J. Climate, 22, 63426355, https://doi.org/10.1175/2009JCLI2981.1.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Search Google Scholar
    • Export Citation
  • Wainwright, L., G. Meyers, S. Wijffels, and L. Pigot, 2008: Change in the Indonesian Throughflow with the climatic shift of 1976/77. Geophys. Res. Lett., 35, L03604, https://doi.org/10.1029/2007GL031911.

    • Search Google Scholar
    • Export Citation
  • Wang, G., S.-P. Xie, R. X. Huang, and C. Chen, 2015: Robust warming pattern of global subtropical oceans and its mechanism. J. Climate, 28, 85748584, https://doi.org/10.1175/JCLI-D-14-00809.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., B. Tong, D. Wang, and L. Yang, 2020: Variations of the North Equatorial Current bifurcation and the SSH in the western Pacific associated with El Niño flavors. J. Geophys. Res. Oceans, 125, e2019JC015733, https://doi.org/10.1029/2019JC015733.

    • Search Google Scholar
    • Export Citation
  • Wen, Q., J. Yao, K. Doos, and H. J. Yang, 2018: Decoding hosing and heating effects on global temperature and meridional circulations in a warming climate. J. Climate, 31, 96059623, https://doi.org/10.1175/JCLI-D-18-0297.1.

    • Search Google Scholar
    • Export Citation
  • Wijffels, S., and G. Meyers, 2004: An intersection of oceanic waveguides: Variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34, 12321253, https://doi.org/10.1175/1520-0485(2004)034<1232:AIOOWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1987: Indonesian through flow and the associated pressure gradient. J. Geophys. Res., 92, 12 94112 946, https://doi.org/10.1029/JC092iC12p12941.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1025 787 91
Full Text Views 377 293 16
PDF Downloads 476 371 16