140 Years of Global Ocean Wind-Wave Climate Derived from CMIP6 ACCESS-CM2 and EC-Earth3 GCMs: Global Trends, Regional Changes, and Future Projections

Alberto Meucci aDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Alberto Meucci in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0278-756X
,
Ian R. Young aDepartment of Infrastructure Engineering, The University of Melbourne, Parkville, Victoria, Australia

Search for other papers by Ian R. Young in
Current site
Google Scholar
PubMed
Close
,
Mark Hemer bCSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

Search for other papers by Mark Hemer in
Current site
Google Scholar
PubMed
Close
,
Claire Trenham cCSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory, Australia

Search for other papers by Claire Trenham in
Current site
Google Scholar
PubMed
Close
, and
Ian G. Watterson dCSIRO Climate Science Centre, Aspendale, Victoria, Australia

Search for other papers by Ian G. Watterson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We present four 140-yr wind-wave climate simulations (1961–2100) forced with surface wind speed and sea ice concentration from two CMIP6 GCMs under two different climate scenarios: SSP1–2.6 and SSP5–8.5. A global three-grid system is implemented in WAVEWATCH III to simulate the wave–ice interactions in the Arctic and Antarctic regions. The models perform well in comparison with global satellite altimeter and in situ buoys climatology. The comparison with traditional trend analyses demonstrates the present GCM-forced wave models’ ability to reproduce the main historical climate signals. The long-term datasets allow a comprehensive description of the twentieth- and twenty-first-century wave climate and yield statistically robust trends. Analysis of the latest IPCC ocean climatic regions highlights four regions where changes in wave climate are projected to be most significant: the Arctic, the North Pacific, the North Atlantic, and the Southern Ocean. The main driver of offshore wave climate change is the wind, except for the Arctic where the significant sea ice retreat causes a sharp increase in the projected wave heights. Distinct changes in the wave period and the wave direction are found in the Southern Hemisphere, where the poleward shift of the Southern Ocean westerlies causes an increase in the wave period of up to 5% and a counterclockwise change in wave direction of up to 5°. The new CMIP6 forced wave models improve in performance compared to previous CMIP5 forced wave models, and will ultimately contribute to a new CMIP6 wind-wave climate model ensemble, crucial for coastal adaptation strategies and the design of future marine offshore structures and operations.

Significance Statement

The purpose of this study is to advance the understanding of ocean wind-wave climate evolution over the twentieth and twenty-first centuries and to effectively communicate the long-term impacts of climate change in diverse wind-wave climatic regions across the globe. The 140-yr continuous model results produced in this work are crucial to studying changes in extreme sea states and investigating the relationship between interdecadal periodic oscillations and long-term climate trends. The dataset produced can be used to gain further insight into the substantial long-term changes of the polar wind-wave climate caused by the rapid decrease of sea ice coverage, and the evolution of the directional changes in the sea states triggered by climate change.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alberto Meucci, alberto.meucci@unimelb.edu.au

Abstract

We present four 140-yr wind-wave climate simulations (1961–2100) forced with surface wind speed and sea ice concentration from two CMIP6 GCMs under two different climate scenarios: SSP1–2.6 and SSP5–8.5. A global three-grid system is implemented in WAVEWATCH III to simulate the wave–ice interactions in the Arctic and Antarctic regions. The models perform well in comparison with global satellite altimeter and in situ buoys climatology. The comparison with traditional trend analyses demonstrates the present GCM-forced wave models’ ability to reproduce the main historical climate signals. The long-term datasets allow a comprehensive description of the twentieth- and twenty-first-century wave climate and yield statistically robust trends. Analysis of the latest IPCC ocean climatic regions highlights four regions where changes in wave climate are projected to be most significant: the Arctic, the North Pacific, the North Atlantic, and the Southern Ocean. The main driver of offshore wave climate change is the wind, except for the Arctic where the significant sea ice retreat causes a sharp increase in the projected wave heights. Distinct changes in the wave period and the wave direction are found in the Southern Hemisphere, where the poleward shift of the Southern Ocean westerlies causes an increase in the wave period of up to 5% and a counterclockwise change in wave direction of up to 5°. The new CMIP6 forced wave models improve in performance compared to previous CMIP5 forced wave models, and will ultimately contribute to a new CMIP6 wind-wave climate model ensemble, crucial for coastal adaptation strategies and the design of future marine offshore structures and operations.

Significance Statement

The purpose of this study is to advance the understanding of ocean wind-wave climate evolution over the twentieth and twenty-first centuries and to effectively communicate the long-term impacts of climate change in diverse wind-wave climatic regions across the globe. The 140-yr continuous model results produced in this work are crucial to studying changes in extreme sea states and investigating the relationship between interdecadal periodic oscillations and long-term climate trends. The dataset produced can be used to gain further insight into the substantial long-term changes of the polar wind-wave climate caused by the rapid decrease of sea ice coverage, and the evolution of the directional changes in the sea states triggered by climate change.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alberto Meucci, alberto.meucci@unimelb.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 25.7 MB)
Save
  • Aarnes, O. J., S. Abdalla, J.-R. Bidlot, and Ø. Breivik, 2015: Marine wind and wave height trends at different ERA-interim forecast ranges. J. Climate, 28, 819837, https://doi.org/10.1175/JCLI-D-14-00470.1.

    • Search Google Scholar
    • Export Citation
  • Amores, A., and M. Marcos, 2020: Ocean swells along the global coastlines and their climate projections for the twenty-first century. J. Climate, 33, 185199, https://doi.org/10.1175/JCLI-D-19-0216.1.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., I. R. Young, and M. L. Banner, 2001: Breaking probabilities for dominant surface waves on water of finite constant depth. J. Geophys. Res., 106, 11 65911 676, https://doi.org/10.1029/2000JC000215.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., M. L. Banner, I. R. Young, and M. A. Donelan, 2007: Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. J. Phys. Oceanogr., 37, 27642775, https://doi.org/10.1175/2007JPO3757.1.

    • Search Google Scholar
    • Export Citation
  • Bi, D., and Coauthors, 2020: Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisphere Earth Syst. Sci., 70, 225251, https://doi.org/10.1071/ES19040.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Search Google Scholar
    • Export Citation
  • Bugnot, A. B., and Coauthors, 2021: Current and projected global extent of marine built structures. Nat. Sustainability, 4, 3341, https://doi.org/10.1038/s41893-020-00595-1.

    • Search Google Scholar
    • Export Citation
  • Camus, P., I. Losada, C. Izaguirre, A. Espejo, M. Menéndez, and J. Pérez, 2017: Statistical wave climate projections for coastal impact assessments. Earth’s Future, 5, 918933, https://doi.org/10.1002/2017EF000609.

    • Search Google Scholar
    • Export Citation
  • Casas-Prat, M., and X. L. Wang, 2020: Projections of extreme ocean waves in the Arctic and potential implications for coastal inundation and erosion. J. Geophys. Res. Oceans, 125, e2019JC015745, https://doi.org/10.1029/2019JC015745.

    • Search Google Scholar
    • Export Citation
  • Casas-Prat, M., X. L. Wang, and N. Swart, 2018: CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Modell., 123, 6685, https://doi.org/10.1016/j.ocemod.2017.12.003.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2019: Extremes, abrupt changes, and managing risk. Climate Change 2019: The Physical Science Basis, H. O. Pörtner et al., Eds., Cambridge University Press, 589–655.

  • Davidson-Arnott, R., B. Bauer, and C. Houser, 2019: Introduction to Coastal Processes and Geomorphology. Cambridge University Press, 536 pp.

  • Dodet, G., and Coauthors, 2020: The Sea state CCI dataset v1: Towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data, 12, 19291951, https://doi.org/10.5194/essd-12-1929-2020.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, M. L. Banner, and C. McCormick, 2005: Wave-follower field measurements of the wind-input spectral function. Part I: Measurements and calibrations. J. Atmos. Oceanic Technol., 22, 799813, https://doi.org/10.1175/JTECH1725.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689, https://doi.org/10.1175/JPO2933.1.

    • Search Google Scholar
    • Export Citation
  • Döscher, R., and Coauthors, 2022: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev., 15, 29733020, https://doi.org/10.5194/gmd-15-2973-2022.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., and Coauthors, 2021: Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al. Eds., Cambridge University Press, 1211–1361.

  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

    • Search Google Scholar
    • Export Citation
  • Goyal, R., A. Sen Gupta, M. Jucker, and M. H. England, 2021: Historical and projected changes in the Southern Hemisphere surface westerlies. Geophys. Res. Lett., 48, e2020GL090849, https://doi.org/10.1029/2020GL090849.

    • Search Google Scholar
    • Export Citation
  • Grigorieva, V. G., S. K. Gulev, and A. V. Gavrikov, 2017: Global historical archive of wind waves based on voluntary observing ship data. Oceanology, 57, 229231, https://doi.org/10.1134/S0001437017020060.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and V. Grigorieva, 2004: Last century changes in ocean wind wave height from global visual wave data. Geophys. Res. Lett., 31, L24302, https://doi.org/10.1029/2004GL021040.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and V. Grigorieva, 2006: Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J. Climate, 19, 56675685, https://doi.org/10.1175/JCLI3936.1.

    • Search Google Scholar
    • Export Citation
  • Harley, M. D., and Coauthors, 2017: Extreme coastal erosion enhanced by anomalous extratropical storm wave direction. Sci. Rep., 7, 6033, https://doi.org/10.1038/s41598-017-05792-1.

    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., P. Cook, L. C. Shaffrey, and R. Schiemann, 2020: The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. Atmos., 125, e2020JD032701, https://doi.org/10.1029/2020JD032701.

    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., and G. P. Peters, 2020: Emissions—The ‘business as usual’ story is misleading. Nature, 577, 618620, https://doi.org/10.1038/d41586-020-00177-3.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., and C. E. Trenham, 2016: Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble. Ocean Modell., 103, 190203, https://doi.org/10.1016/j.ocemod.2015.10.009.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., J. A. Church, and J. R. Hunter, 2010: Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol., 30, 475491, https://doi.org/10.1002/joc.1900.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., X. L. Wang, R. Weisse, and V. R. Swail, 2012: Advancing wind-waves climate science: The COWCLIP project. Bull. Amer. Meteor. Soc., 93, 791796, https://doi.org/10.1175/BAMS-D-11-00184.1.

    • Search Google Scholar
    • Export Citation
  • Hemer, M. A., Y. Fan, N. Mori, A. Semedo, and X. L. Wang, 2013: Projected changes in wave climate from a multi-model ensemble. Nat. Climate Change, 3, 471476, https://doi.org/10.1038/nclimate1791.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hinkel, J., and Coauthors, 2014: Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA, 111, 32923297, https://doi.org/10.1073/pnas.1222469111.

    • Search Google Scholar
    • Export Citation
  • Hinkel, J., and Coauthors, 2021: Uncertainty and bias in global to regional scale assessments of current and future coastal flood risk. Earth’s Future, 9, e2020EF001882, https://doi.org/10.1029/2020EF001882.

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., and J. R. Slack, 1984: A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20, 727732, https://doi.org/10.1029/WR020i006p00727.

    • Search Google Scholar
    • Export Citation
  • Hirsch, R. M., J. R. Slack, and R. A. Smith, 1982: Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18, 107121, https://doi.org/10.1029/WR018i001p00107.

    • Search Google Scholar
    • Export Citation
  • Hoeke, R. K., K. L. McInnes, J. C. Kruger, R. J. McNaught, J. R. Hunter, and S. G. Smithers, 2013: Widespread inundation of Pacific islands triggered by distant-source wind-waves. Global Planet. Change, 108, 128138, https://doi.org/10.1016/j.gloplacha.2013.06.006.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., 2010: Waves in Oceanic and Coastal Waters. Cambridge University Press, 404 pp.

  • Hwang, P. A., 2011: A note on the ocean surface roughness spectrum. J. Atmos. Oceanic Technol., 28, 436443, https://doi.org/10.1175/2010JTECHO812.1.

    • Search Google Scholar
    • Export Citation
  • Iturbide, M., and Coauthors, 2020: An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data, 12, 29592970, https://doi.org/10.5194/essd-12-2959-2020.

    • Search Google Scholar
    • Export Citation
  • Kench, P. S., and R. W. Brander, 2006: Wave processes on coral reef flats: Implications for reef geomorphology using Australian case studies. J. Coastal Res., 221, 209223, https://doi.org/10.2112/05A-0016.1.

    • Search Google Scholar
    • Export Citation
  • Kench, P. S., R. W. Brander, K. E. Parnell, and R. F. McLean, 2006: Wave energy gradients across a Maldivian atoll: Implications for island geomorphology. Geomorphology, 81, 117, https://doi.org/10.1016/j.geomorph.2006.03.003.

    • Search Google Scholar
    • Export Citation
  • Kirezci, E., I. R. Young, R. Ranasinghe, S. Muis, R. J. Nicholls, D. Lincke, and J. Hinkel, 2020: Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century. Sci. Rep., 10, 11629, https://doi.org/10.1038/s41598-020-67736-6.

    • Search Google Scholar
    • Export Citation
  • Kumar, P., S.-K. Min, E. Weller, H. Lee, and X. L. Wang, 2016: Influence of climate variability on extreme ocean surface wave heights assessed from ERA-Interim and ERA-20C. J. Climate, 29, 40314046, https://doi.org/10.1175/JCLI-D-15-0580.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., W. E. Rogers, A. V. Babanin, I. R. Young, L. Romero, S. Zieger, F. Qiao, and C. Guan, 2019: Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification. J. Phys. Oceanogr., 49, 489517, https://doi.org/10.1175/JPO-D-18-0137.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., and Coauthors, 2021: Global wave hindcasts using the observation-based source terms: Description and validation. J. Adv. Model. Earth Syst., 13, e2021MS002493, https://doi.org/10.1029/2021MS002493.

    • Search Google Scholar
    • Export Citation
  • Lopatoukhin, L., V. Rozhkov, V. Ryabinin, V. Swail, A. Boukhanovsky, and A. Degtyarev, 2000: Estimation of extreme wind wave heights. JCOMM Tech. Rep. 9, WMO/TD-1041, 70 pp., https://library.wmo.int/doc_num.php?explnum_id=9169.

  • Lowe, J. A., and Coauthors, 2010: Past and future changes in extreme sea levels and waves. Understanding Sea-Level Rise and Variability, J. A. Church et al. Eds., Wiley-Blackwell, 326–375.

  • Marcos, M., J. Rohmer, M. I. Vousdoukas, L. Mentaschi, G. Le Cozannet, and A. Amores, 2019: Increased extreme coastal water levels due to the combined action of storm surges and wind waves. Geophys. Res. Lett., 46, 43564364, https://doi.org/10.1029/2019GL082599.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., T. A. Erwin, and J. M. Bathols, 2011: Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett., 12, 325333, https://doi.org/10.1002/asl.341.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.-F. Lamarque, R. J. Stouffer, K. E. Taylor, and M. Schlund, 2020: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv., 6, eaba1981, https://doi.org/10.1126/sciadv.aba1981.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Almar, M. Hemer, G. Le Cozannet, B. Meyssignac, and P. Ruggiero, 2020: Contribution of wave setup to projected coastal sea level changes. J. Geophys. Res. Oceans, 125, e2020JC016078, https://doi.org/10.1029/2020JC016078.

    • Search Google Scholar
    • Export Citation
  • Mentaschi, L., M. I. Vousdoukas, E. Voukouvalas, A. Dosio, and L. Feyen, 2017: Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophys. Res. Lett., 44, 24162426, https://doi.org/10.1002/2016GL072488.

    • Search Google Scholar
    • Export Citation
  • Meredith, M., and Coauthors, 2019: Polar regions. The Ocean and Cryosphere in a Changing Climate, H. O. Pörtner et al., Eds., Cambridge University Press, 203–320.

  • Meucci, A., I. R. Young, O. J. Aarnes, and Ø. Breivik, 2020a: Comparison of wind speed and wave height trends from twentieth-century models and satellite altimeters. J. Climate, 33, 611624, https://doi.org/10.1175/JCLI-D-19-0540.1.

    • Search Google Scholar
    • Export Citation
  • Meucci, A., I. R. Young, M. Hemer, E. Kirezci, and R. Ranasinghe, 2020b: Projected 21st century changes in extreme wind-wave events. Sci. Adv., 6, eaaz7295, https://doi.org/10.1126/sciadv.aaz7295.

    • Search Google Scholar
    • Export Citation
  • Meucci, A., I. Young, M. Hemer, and C. Trenham, 2021: CMIP6 global wind-wave 21st century climate projections phase 1, version 1. CSIRO, accessed 4 January 2023, https://doi.org/102.100.100/432508.

  • Morim, J., M. Hemer, N. Cartwright, D. Strauss, and F. Andutta, 2018: On the concordance of 21st century wind-wave climate projections. Global Planet. Change, 167, 160171, https://doi.org/10.1016/j.gloplacha.2018.05.005.

    • Search Google Scholar
    • Export Citation
  • Morim, J., and Coauthors, 2019: Robustness and uncertainties in global multivariate wind-wave climate projections. Nat. Climate Change, 9, 711718, https://doi.org/10.1038/s41558-019-0542-5.

    • Search Google Scholar
    • Export Citation
  • Morim, J., M. Hemer, F. Andutta, T. Shimura, and N. Cartwright, 2020a: Skill and uncertainty in surface wind fields from general circulation models: Intercomparison of bias between AGCM, AOGCM and ESM global simulations. Int. J. Climatol., 40, 26592673, https://doi.org/10.1002/joc.6357.

    • Search Google Scholar
    • Export Citation
  • Morim, J., and Coauthors, 2020b: A global ensemble of ocean wave climate projections from CMIP5-driven models. Sci. Data, 7, 105, https://doi.org/10.1038/s41597-020-0446-2.

    • Search Google Scholar
    • Export Citation
  • Ochi, M. K., 2005: Ocean Waves: The Stochastic Approach. Vol. 6. Cambridge University Press, 332 pp., https://doi.org/10.1017/CBO9780511529559.

  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • Pak, G., and Coauthors, 2021: Korea Institute of Ocean Science and Technology Earth System Model and its simulation characteristics. Ocean Sci. J., 56, 1845, https://doi.org/10.1007/s12601-021-00001-7.

    • Search Google Scholar
    • Export Citation
  • Pinheiro, H., T. Ambrizzi, K. Hodges, M. Gan, K. Andrade, and J. Garcia, 2022: Are cut-off lows simulated better in CMIP6 compared to CMIP5? Climate Dyn., 59, 21172136, https://doi.org/10.1007/s00382-022-06200-9.

    • Search Google Scholar
    • Export Citation
  • Priestley, M. D., D. Ackerley, J. L. Catto, K. I. Hodges, R. E. McDonald, and R. W. Lee, 2020: An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Climate, 33, 63156343, https://doi.org/10.1175/JCLI-D-19-0928.1.

    • Search Google Scholar
    • Export Citation
  • Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.

    • Search Google Scholar
    • Export Citation
  • Ribal, A., and I. R. Young, 2019: 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data, 6, 100, https://doi.org/10.1038/s41597-019-0108-4.

    • Search Google Scholar
    • Export Citation
  • Roach, L. A., and Coauthors, 2020: Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47, e2019GL086729, https://doi.org/10.1029/2019GL086729.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., and R. S. Linzell, 2018: The IRI Grid System for use with WAVEWATCH III. Tech. Rep. NRL/MR/7320-18-9835, 56 pp., https://apps.dtic.mil/sti/citations/AD1065566.

  • Rogers, W. E., A. V. Babanin, and D. W. Wang, 2012: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Oceanic Technol., 29, 13291346, https://doi.org/10.1175/JTECH-D-11-00092.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sardain, A., E. Sardain, and B. Leung, 2019: Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustainability, 2, 274282, https://doi.org/10.1038/s41893-019-0245-y.

    • Search Google Scholar
    • Export Citation
  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. J. Amer. Stat. Assoc., 63, 13791389, https://doi.org/10.1080/01621459.1968.10480934.

    • Search Google Scholar
    • Export Citation
  • Snodgrass, F. E., K. F. Hasselmann, G. R. Miller, W. H. Munk, and W. H. Powers, 1966: Propagation of ocean swell across the Pacific. Philos. Trans. Roy. Soc., A259, 431497, https://doi.org/10.1098/rsta.1966.0022.

    • Search Google Scholar
    • Export Citation
  • Song, Z., Y. Bao, D. Zhang, Q. Shu, Y. Song, and F. Qiao, 2020: Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data, 7, 226, https://doi.org/10.1038/s41597-020-0566-8.

    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., 2018: Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Modell., 127, 5569, https://doi.org/10.1016/j.ocemod.2018.04.008.

    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., and K. F. Cheung, 2014: Periodicity and patterns of ocean wind and wave climate. J. Geophys. Res. Oceans, 119, 55635584, https://doi.org/10.1002/2013JC009729.

    • Search Google Scholar
    • Export Citation
  • Theil, H., 1950: A rank-invariant method of linear and polynominal regression analysis (parts 1–3). Ned. Akad. Wetensch. Proc., 53, 386–392.

    • Search Google Scholar
    • Export Citation
  • The WAVEWATCH III Development Group (WW3DG), 2019: User manual and system documentation of WAVEWATCH III version 6.07. Tech. Note 333, NOAA/NWS/NCEP/MMAB, 465 pp.

  • Timmermans, B., D. Stone, M. Wehner, and H. Krishnan, 2017: Impact of tropical cyclones on modeled extreme wind-wave climate. Geophys. Res. Lett., 44, 13931401, https://doi.org/10.1002/2016GL071681.

    • Search Google Scholar
    • Export Citation
  • Timmermans, B. W., C. P. Gommenginger, G. Dodet, and J.-R. Bidlot, 2020: Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys. Res. Lett., 47, e2019GL086880, https://doi.org/10.1029/2019GL086880

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435, https://doi.org/10.1126/science.1169823.

  • Watterson, I. G., 2015: Improved simulation of regional climate by global models with higher resolution: Skill scores correlated with grid length. J. Climate, 28, 59856000, https://doi.org/10.1175/JCLI-D-14-00702.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Search Google Scholar
    • Export Citation
  • Wohland, J., N.-E. Omrani, D. Witthaut, and N. S. Keenlyside, 2019: Inconsistent wind speed trends in current twentieth century reanalyses. J. Geophys. Res. Atmos., 124, 19311940, https://doi.org/10.1029/2018JD030083.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol., 19, 931950, https://doi.org/10.1002/(SICI)1097-0088(199907)19:9<931::AID-JOC412>3.0.CO;2-O.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36, 376394, https://doi.org/10.1175/JPO2859.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and M. A. Donelan, 2018: On the determination of global ocean wind and wave climate from satellite observations. Remote Sens. Environ., 215, 228241, https://doi.org/10.1016/j.rse.2018.06.006.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. Ribal, 2019: Multiplatform evaluation of global trends in wind speed and wave height. Science, 364, 548552, https://doi.org/10.1126/science.aav9527.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. Ribal, 2022: Can multi-mission altimeter datasets accurately measure long-term trends in wave height? Remote Sens., 14, 974, https://doi.org/10.3390/rs14040974.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., M. L. Banner, M. A. Donelan, C. McCormick, A. V. Babanin, W. K. Melville, and F. Veron, 2005: An integrated system for the study of wind-wave source terms in finite-depth water. J. Atmos. Oceanic Technol., 22, 814831, https://doi.org/10.1175/JTECH1726.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and A. V. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, https://doi.org/10.1126/science.1197219.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., A. V. Babanin, and S. Zieger, 2013: The decay rate of ocean swell observed by altimeter. J. Phys. Oceanogr., 43, 23222333, https://doi.org/10.1175/JPO-D-13-083.1.

    • Search Google Scholar
    • Export Citation
  • Zieger, S., A. V. Babanin, W. E. Rogers, and I. R. Young, 2015: Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modell., 96, 225, https://doi.org/10.1016/j.ocemod.2015.07.014.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2572 1349 98
Full Text Views 652 375 33
PDF Downloads 828 450 34