• Adams, R. M., C.-C. Chen, B. A. McCarl, and R. F. Weiher, 1999: The economic consequences of ENSO events for agriculture. Climate Res., 13, 165172, https://doi.org/10.3354/cr013165.

    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and R. Luptowitz, 2017: El Niño-like teleconnection increases California precipitation in response to warming. Nat. Commun., 8, 16055, https://doi.org/10.1038/ncomms16055.

    • Search Google Scholar
    • Export Citation
  • Atwood, A. R., D. S. Battisti, A. T. Wittenberg, W. H. G. Roberts, and D. J. Vimont, 2017: Characterizing unforced multi-decadal variability of ENSO: A case study with the GFDL CM2.1 coupled GCM. Climate Dyn., 49, 28452862, https://doi.org/10.1007/s00382-016-3477-9.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., M. Latif, D. Dommenget, C. Wengel, J. Harlaß, and W. Park, 2018: Mean-state dependence of ENSO atmospheric feedbacks in climate models. Climate Dyn., 50, 31713194, https://doi.org/10.1007/s00382-017-3799-2.

    • Search Google Scholar
    • Export Citation
  • Bayr, T., D. I. V. Domeisen, and C. Wengel, 2019: The effect of the equatorial Pacific cold SST bias on simulated ENSO teleconnections to the North Pacific and California. Climate Dyn., 53, 37713789, https://doi.org/10.1007/s00382-019-04746-9.

    • Search Google Scholar
    • Export Citation
  • Beverley, J. D., M. Collins, F. H. Lambert, and R. Chadwick, 2021: Future changes to El Niño teleconnections over the North Pacific and North America. J. Climate, 34, 61916205, https://doi.org/10.1175/JCLI-D-20-0877.1.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2018: Increased variability of Eastern Pacific El Niño under greenhouse warming. Nature, 564, 201206, https://doi.org/10.1038/s41586-018-0776-9.

    • Search Google Scholar
    • Export Citation
  • Chao, J., G. Fan, and R. Ding, 2021: Influence of the North American dipole on ENSO onset as simulated by a coupled ocean–atmosphere model. Atmos. Oceanic Sci. Lett., 14, 100058, https://doi.org/10.1016/j.aosl.2021.100058.

    • Search Google Scholar
    • Export Citation
  • Chung, C. T. Y., and S. B. Power, 2016: Modelled impact of global warming on ENSO-driven precipitation changes in the tropical Pacific. Climate Dyn., 47, 13031323, https://doi.org/10.1007/s00382-015-2902-9.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1994: On ENSO coastal currents and sea levels. J. Phys. Oceanogr., 24, 661680, https://doi.org/10.1175/1520-0485(1994)024<0661:OECCAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and P. D. Sardeshmukh, 2009: Oceanic influences on recent continental warming. Climate Dyn., 32, 333342, https://doi.org/10.1007/s00382-008-0448-9.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Search Google Scholar
    • Export Citation
  • Deser, C., I. R. Simpson, K. A. McKinnon, and A. S. Phillips, 2017: The Northern Hemisphere extratropical atmospheric circulation response to ENSO: How well do we know it and how do we evaluate models accordingly? J. Climate, 30, 50595082, https://doi.org/10.1175/JCLI-D-16-0844.1.

    • Search Google Scholar
    • Export Citation
  • DeWeaver, E., and S. Nigam, 2000: Do stationary waves drive the zonal-mean jet anomalies of the northern winter? J. Climate, 13, 21602176, https://doi.org/10.1175/1520-0442(2000)013<2160:DSWDTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections and climate change. Int. J. Climatol., 21, 18451862, https://doi.org/10.1002/joc.631.

    • Search Google Scholar
    • Export Citation
  • DiNezio, P. N., A. C. Clement, G. Vecchi, B. J. Soden, B. P. Kirtman, and S.-K. Lee, 2009: Climate response of the equatorial Pacific to global warming. J. Climate, 22, 48734892, https://doi.org/10.1175/2009JCLI2982.1.

    • Search Google Scholar
    • Export Citation
  • Dieppois, B., A. Capotondi, B. Pohl, K. P. Chun, P.-A. Monerie, and J. Eden, 2021: ENSO diversity shows robust decadal variations that must be captured for accurate future projections. Commun. Earth Environ., 2, 212, https://doi.org/10.1038/s43247-021-00285-6.

    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Search Google Scholar
    • Export Citation
  • Dong, L., and L. R. Leung, 2021: Winter precipitation changes in California under global warming: Contributions of CO2, uniform SST warming, and SST change patterns. Geophys. Res. Lett., 48, e2020GL091736, https://doi.org/10.1029/2020GL091736.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Endris, H. S., C. Lennard, B. Hewitson, A. Dosio, G. Nikulin, and G. A. Artan, 2019: Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Climate Dyn., 52, 20292053, https://doi.org/10.1007/s00382-018-4239-7.

    • Search Google Scholar
    • Export Citation
  • England, M. H., and F. Huang, 2005: On the interannual variability of the Indonesian Throughflow and its linkage with ENSO. J. Climate, 18, 14351444, https://doi.org/10.1175/JCLI3322.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Y., X. Chen, and K.-K. Tung, 2020: ENSO diversity and the recent appearance of Central Pacific ENSO. Climate Dyn., 54, 413433, https://doi.org/10.1007/s00382-019-05005-7.

    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, https://doi.org/10.1175/JCLI-D-13-00757.1.

    • Search Google Scholar
    • Export Citation
  • Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci., 12, 450455, https://doi.org/10.1038/s41561-019-0353-3.

    • Search Google Scholar
    • Export Citation
  • Freund, M. B., J. R. Brown, B. J. Henley, D. J. Karoly, and J. N. Brown, 2020: Warming patterns affect El Niño diversity in CMIP5 and CMIP6 models. J. Climate, 33, 82378260, https://doi.org/10.1175/JCLI-D-19-0890.1.

    • Search Google Scholar
    • Export Citation
  • Frischknecht, M., M. Münnich, and N. Gruber, 2015: Remote versus local influence of ENSO on the California current system. J. Geophys. Res. Oceans, 120, 13531374, https://doi.org/10.1002/2014JC010531.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gleckler, P. J., and Coauthors, 2012: Human-induced global ocean warming on multidecadal timescales. Nat. Climate Change, 2, 524529, https://doi.org/10.1038/nclimate1553.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., and R. A. Fine, 1996: Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379, 146149, https://doi.org/10.1038/379146a0.

    • Search Google Scholar
    • Export Citation
  • Gutzler, D. S., D. M. Kann, and C. Thornbrugh, 2002: Modulation of ENSO-based long-lead outlooks of Southwestern U.S. winter precipitation by the Pacific decadal oscillation. Wea. Forecasting, 17, 11631172, https://doi.org/10.1175/1520-0434(2002)017<1163:MOEBLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hao, X., and S. He, 2017: Combined effect of ENSO-like and Atlantic multidecadal oscillation SSTAs on the interannual variability of the East Asian winter monsoon. J. Climate, 30, 26972716, https://doi.org/10.1175/JCLI-D-16-0118.1.

    • Search Google Scholar
    • Export Citation
  • Hao, X., F. Li, J. Sun, H. Wang, and S. He, 2016: Assessment of the response of the East Asian winter monsoon to ENSO-like SSTAs in three U.S. CLIVAR project models. Int. J. Climatol., 36, 847866, https://doi.org/10.1002/joc.4388.

    • Search Google Scholar
    • Export Citation
  • Hao, X., S. He, T. Han, and H. Wang, 2018: Impact of global oceanic warming on winter Eurasian climate. Adv. Atmos. Sci., 35, 12541264, https://doi.org/10.1007/s00376-018-7216-5.

    • Search Google Scholar
    • Export Citation
  • He, L., X. Hao, and T. Han, 2021: The asymmetric impacts of ENSO modoki on boreal winter climate over the Pacific and its rim. Climate Dyn., 56, 2944, https://doi.org/10.1007/s00382-020-05395-z.

    • Search Google Scholar
    • Export Citation
  • Herceg Bulić, I., Č. Branković, and F. Kucharski, 2012: Winter ENSO teleconnections in a warmer climate. Climate Dyn., 38, 15931613, https://doi.org/10.1007/s00382-010-0987-8.

    • Search Google Scholar
    • Export Citation
  • Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 10291042, https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, K., G. Huang, P. Huang, Y. Kosaka, and S.-P. Xie, 2021: Intensification of El Niño-induced atmospheric anomalies under greenhouse warming. Nat. Geosci., 14, 377382, https://doi.org/10.1038/s41561-021-00730-3.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2016: Time-varying response of ENSO-induced tropical Pacific rainfall to global warming in CMIP5 models. Part I: Multimodel ensemble results. J. Climate, 29, 57635778, https://doi.org/10.1175/JCLI-D-16-0058.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., 2017: Time-varying response of ENSO-induced tropical Pacific rainfall to global warming in CMIP5 models. Part II: Intermodel uncertainty. J. Climate, 30, 595608, https://doi.org/10.1175/JCLI-D-16-0373.1.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and S.-P. Xie, 2015: Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci., 8, 922926, https://doi.org/10.1038/ngeo2571.

    • Search Google Scholar
    • Export Citation
  • Huang, P., and D. Chen, 2017: Enlarged asymmetry of tropical Pacific rainfall anomalies induced by El Niño and La Niña under global warming. J. Climate, 30, 13271343, https://doi.org/10.1175/JCLI-D-16-0427.1.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321, https://doi.org/10.1175/2009JCLI2936.1.

    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., R. V. Andreoli, and R. A. F. de Souza, 2019: El Niño–Southern Oscillation related teleconnections over South America under distinct Atlantic multidecadal oscillation and Pacific interdecadal oscillation backgrounds: La Niña. Int. J. Climatol., 39, 13591372, https://doi.org/10.1002/joc.5886.

    • Search Google Scholar
    • Export Citation
  • Kohyama, T., D. L. Hartmann, and D. S. Battisti, 2017: La Niña–like mean-state response to global warming and potential oceanic roles. J. Climate, 30, 42074225, https://doi.org/10.1175/JCLI-D-16-0441.1.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., S.-I. An, Y.-G. Ham, and I.-S. Kang, 2010: Changes in El Niño and La Niña teleconnections over North Pacific–America in the global warming simulations. Theor. Appl. Climatol., 100, 275282, https://doi.org/10.1007/s00704-009-0183-0.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., C. Wang, and B. E. Mapes, 2009: A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J. Climate, 22, 272284, https://doi.org/10.1175/2008JCLI2303.1.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, https://doi.org/10.1038/nclimate1840.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the World Ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592.

    • Search Google Scholar
    • Export Citation
  • Lian, T., D. Chen, J. Ying, P. Huang, and Y. Tang, 2018: Tropical Pacific trends under global warming: El Niño-like or La Niña-like? Natl. Sci. Rev., 5, 810812, https://doi.org/10.1093/nsr/nwy134.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and B.-J. Kim, 2004: The climatological Rossby wave source over the STCZs in the summer northern hemisphere. J. Meteor. Soc. Japan, 82, 657669, https://doi.org/10.2151/jmsj.2004.657.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., J. Lu, F. Liu, and O. Garuba, 2017: The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Climate, 30, 28112827, https://doi.org/10.1175/JCLI-D-16-0454.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in Earth science. Science, 314, 17401745, https://doi.org/10.1126/science.1132588.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and H. Teng, 2007: Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Climate Dyn., 29, 779790, https://doi.org/10.1007/s00382-007-0268-3.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1 (CAM5) compared to CCSM4. J. Climate, 26, 62876308, https://doi.org/10.1175/JCLI-D-12-00572.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Q., M. Latif, W. Park, N. S. Keenlyside, V. A. Semenov, and T. Martin, 2012: Twentieth century Walker circulation change: Data analysis and model experiments. Climate Dyn., 38, 17571773, https://doi.org/10.1007/s00382-011-1047-8.

    • Search Google Scholar
    • Export Citation
  • Michel, C., C. Li, I. R. Simpson, I. Bethke, M. P. King, and S. Sobolowski, 2020: The change in the ENSO teleconnection under a low global warming scenario and the uncertainty due to internal variability. J. Climate, 33, 48714889, https://doi.org/10.1175/JCLI-D-19-0730.1.

    • Search Google Scholar
    • Export Citation
  • Middlemas, E. A., A. C. Clement, B. Medeiros, and B. Kirtman, 2019: Cloud radiative feedbacks and El Niño–Southern Oscillation. J. Climate, 32, 46614680, https://doi.org/10.1175/JCLI-D-18-0842.1.

    • Search Google Scholar
    • Export Citation
  • Mo, K. C., 2010: Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J. Climate, 23, 36393656, https://doi.org/10.1175/2010JCLI3553.1.

    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., and K.-J. Ha, 2003: Association between tropical convection and boreal wintertime extratropical circulation in 1982/83 and 1988/89. Adv. Atmos. Sci., 20, 593603, https://doi.org/10.1007/BF02915502.

    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and E. Roeckner, 2008: ENSO teleconnections in projections of future climate in ECHAM5/MPI-OM. Climate Dyn., 31, 533549, https://doi.org/10.1007/s00382-007-0357-3.

    • Search Google Scholar
    • Export Citation
  • Palmer, M. D., K. Haines, S. F. B. Tett, and T. J. Ansell, 2007: Isolating the signal of ocean global warming. Geophys. Res. Lett., 34, L23610, https://doi.org/10.1029/2007GL031712.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541545, https://doi.org/10.1038/nature12580.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, https://doi.org/10.1007/s00382-014-2135-3.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., M. J. Fennessy, and J. L. Kinter III, 2009: A statistical–dynamical estimate of winter ENSO teleconnections in a future climate. J. Climate, 22, 66246638, https://doi.org/10.1175/2009JCLI3147.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22, 52515272, https://doi.org/10.1175/2009JCLI3060.1.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Song, F., and G. J. Zhang, 2016: Effects of southeastern Pacific sea surface temperature on the double-ITCZ bias in NCAR CESM1. J. Climate, 29, 74177433, https://doi.org/10.1175/JCLI-D-15-0852.1.

    • Search Google Scholar
    • Export Citation
  • Soulard, N., H. Lin, and B. Yu, 2019: The changing relationship between ENSO and its extratropical response patterns. Sci. Rep., 9, 6507, https://doi.org/10.1038/s41598-019-42922-3.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, P. D. Jones, and J. J. Kennedy, 2009: Identifying signatures of natural climate variability in time series of global-mean surface temperature: Methodology and insights. J. Climate, 22, 61206141, https://doi.org/10.1175/2009JCLI3089.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712778, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., K. Hu, G. Huang, and W. Tao, 2021: Asymmetric impacts of El Niño and La Niña on the Pacific–North American teleconnection pattern: The role of subtropical jet stream. Environ. Res. Lett., 16, 114040, https://doi.org/10.1088/1748-9326/ac31ed.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and F.-F. Jin, 2002: Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys. Res. Lett., 29, 116-1116-4, https://doi.org/10.1029/2001GL014318.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and H.-R. Chang, 1988: Equatorial energy accumulation and emanation regions: Impacts of a zonally varying basic state. J. Atmos. Sci., 45, 803829, https://doi.org/10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yan, Z., and Coauthors, 2020: Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Sci. Adv., 6, eaax4177, https://doi.org/10.1126/sciadv.aax4177.

    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Search Google Scholar
    • Export Citation
  • Yang, H., and Coauthors, 2020: Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett., 47, e2019GL085868, https://doi.org/10.1029/2019GL085868.

    • Search Google Scholar
    • Export Citation
  • Yang, Y.-M., J.-H. Park, S.-I. An, B. Wang, and X. Luo, 2021: Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nat. Commun., 12, 1495, https://doi.org/10.1038/s41467-021-21787-z.

    • Search Google Scholar
    • Export Citation
  • Yu, B., and F. W. Zwiers, 2007: The impact of combined ENSO and PDO on the PNA climate: A 1000-year climate modeling study. Climate Dyn., 29, 837851, https://doi.org/10.1007/s00382-007-0267-4.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. Shabbar, and F. W. Zwiers, 2007: The enhanced PNA-like climate response to Pacific interannual and decadal variability. J. Climate, 20, 52855300, https://doi.org/10.1175/2007JCLI1480.1.

    • Search Google Scholar
    • Export Citation
  • Yu, B., X. Zhang, H. Lin, and J.-Y. Yu, 2015: Comparison of wintertime North American climate impacts associated with multiple ENSO indices. Atmos.–Ocean, 53, 426445, https://doi.org/10.1080/07055900.2015.1079697.

    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., Y. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on U.S. winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., S. Hu, and W. Duan, 2021: On the sensitive areas for targeted observations in ENSO forecasting. Atmos. Oceanic Sci. Lett., 14, 100054, https://doi.org/10.1016/j.aosl.2021.100054.

    • Search Google Scholar
    • Export Citation
  • Zheng, X.-T., C. Hui, and S.-W. Yeh, 2018: Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to internal variability. Climate Dyn., 50, 40194035, https://doi.org/10.1007/s00382-017-3859-7.

    • Search Google Scholar
    • Export Citation
  • Zhou, B.-T., H.-J. Wang, and X. Cui, 2008: Significant relationship between Hadley circulation and North Pacific oscillation. Chin. J. Geophys., 51, 709717, https://doi.org/10.1002/cjg2.1263.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z.-Q., S.-P. Xie, X.-T. Zheng, Q. Liu, and H. Wang, 2014: Global warming–induced changes in El Niño teleconnections over the North Pacific and North America. J. Climate, 27, 90509064, https://doi.org/10.1175/JCLI-D-14-00254.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 630 630 35
Full Text Views 281 281 11
PDF Downloads 312 312 14

Ocean Surface Warming Pattern Inhibits El Niño–Induced Atmospheric Teleconnections

Xin HaoaCenter for Climate System Prediction Research, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xin Hao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9018-9879
,
Huijun WangaCenter for Climate System Prediction Research, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
cSouthern Marine Science and Engineering, Guangdong Laboratory, Zhuhai, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
,
Botao ZhouaCenter for Climate System Prediction Research, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Botao Zhou in
Current site
Google Scholar
PubMed
Close
,
Jiandong LidJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jiandong Li in
Current site
Google Scholar
PubMed
Close
,
Jiangfeng WeiaCenter for Climate System Prediction Research, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jiangfeng Wei in
Current site
Google Scholar
PubMed
Close
, and
Tingting HanaCenter for Climate System Prediction Research, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China
bNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Tingting Han in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ocean surface temperature has warmed dramatically over most of the globe in recent decades, which shows the west warmed faster than the east (“La Niña–like” warming) in the equatorial Pacific. It differs from the simulated “El Niño–like” warming in existing studies that discussed the El Niño–induced teleconnection response to global warming. Some studies have indicated that El Niño teleconnections are sensitive to the ocean surface warming patterns, but the mechanisms are still elusive. Here, reanalysis data and numerical experiments were analyzed to investigate how winter El Niño atmospheric teleconnections respond to the historical ocean surface warming. We show that the inhibited effect of the El Niño on the North African winter climate through the suppressed Walker circulation over Atlantic–Africa–Indian Ocean sectors under the ocean surface warming matches the observed changes. Also, the model reproduces the observed weakening of the El Niño–induced Pacific–North American wave and its suppressed downstream propagation in the ocean surface warming scenario because of the reduction in contributions of the vortex stretching to the El Niño–induced wave sources in the subtropical jet streams. Our findings demonstrate the important role of ocean surface warming patterns in the projections of the El Niño–induced atmospheric teleconnection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Hao, haoxlike91@163.com

Abstract

The ocean surface temperature has warmed dramatically over most of the globe in recent decades, which shows the west warmed faster than the east (“La Niña–like” warming) in the equatorial Pacific. It differs from the simulated “El Niño–like” warming in existing studies that discussed the El Niño–induced teleconnection response to global warming. Some studies have indicated that El Niño teleconnections are sensitive to the ocean surface warming patterns, but the mechanisms are still elusive. Here, reanalysis data and numerical experiments were analyzed to investigate how winter El Niño atmospheric teleconnections respond to the historical ocean surface warming. We show that the inhibited effect of the El Niño on the North African winter climate through the suppressed Walker circulation over Atlantic–Africa–Indian Ocean sectors under the ocean surface warming matches the observed changes. Also, the model reproduces the observed weakening of the El Niño–induced Pacific–North American wave and its suppressed downstream propagation in the ocean surface warming scenario because of the reduction in contributions of the vortex stretching to the El Niño–induced wave sources in the subtropical jet streams. Our findings demonstrate the important role of ocean surface warming patterns in the projections of the El Niño–induced atmospheric teleconnection.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Hao, haoxlike91@163.com

Supplementary Materials

    • Supplemental Materials (PDF 3.01 MB)
Save