The Role of Surface Fluxes in MJO Propagation through the Maritime Continent

Justin Hudson aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Justin Hudson in
Current site
Google Scholar
PubMed
Close
and
Eric Maloney aDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The “barrier effect” of the Maritime Continent (MC) is a known hurdle in understanding the propagation of the Madden–Julian oscillation (MJO). To understand the differing dynamics of MJO events that propagate versus stall over the MC, a new tracking algorithm utilizing 30–96-day-filtered NOAA Interpolated OLR anomalies is presented. Using this algorithm, MJO events can be identified, tracked, and described in terms of their propagation characteristics. Latent heat flux from OAFlux and CYGNSS surface winds and fluxes are compared for MJO events that do and do not propagate through the MC. Events that successfully propagate through the MC demonstrate regional surface flux anomalies that are stronger, more spatially coherent, and have a larger fetch. The spatial scale of convective anomalies for events that successfully propagate through the MC region is also larger than for terminating events. Large-scale enhancement of latent heat fluxes near and to the east of the date line, equally driven by dynamic and thermodynamic effects, also accompanies MJO events that successfully propagate through the MC. These findings are placed in the context of recent theoretical models of the MJO in which latent heat fluxes are important for propagation and destabilization.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Hudson, justin.hudson@colostate.edu

Abstract

The “barrier effect” of the Maritime Continent (MC) is a known hurdle in understanding the propagation of the Madden–Julian oscillation (MJO). To understand the differing dynamics of MJO events that propagate versus stall over the MC, a new tracking algorithm utilizing 30–96-day-filtered NOAA Interpolated OLR anomalies is presented. Using this algorithm, MJO events can be identified, tracked, and described in terms of their propagation characteristics. Latent heat flux from OAFlux and CYGNSS surface winds and fluxes are compared for MJO events that do and do not propagate through the MC. Events that successfully propagate through the MC demonstrate regional surface flux anomalies that are stronger, more spatially coherent, and have a larger fetch. The spatial scale of convective anomalies for events that successfully propagate through the MC region is also larger than for terminating events. Large-scale enhancement of latent heat fluxes near and to the east of the date line, equally driven by dynamic and thermodynamic effects, also accompanies MJO events that successfully propagate through the MC. These findings are placed in the context of recent theoretical models of the MJO in which latent heat fluxes are important for propagation and destabilization.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Justin Hudson, justin.hudson@colostate.edu
Save
  • Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Ahn, M., and Coauthors, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, https://doi.org/10.1029/2020GL087250.

    • Search Google Scholar
    • Export Citation
  • Araligidad, N. M., and E. D. Maloney, 2008: Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett., 35, L04815, https://doi.org/10.1029/2007GL032746.

    • Search Google Scholar
    • Export Citation
  • Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 46214640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden–Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Search Google Scholar
    • Export Citation
  • Baggett, C. F., E. A. Barnes, E. D. Maloney, and B. D. Mundhenk, 2017: Advancing atmospheric river forecasts into subseasonal-to-seasonal time scales. Geophys. Res. Lett., 44, 75287536, https://doi.org/10.1002/2017GL074434.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., S. M. Samarasinghe, I. Ebert-Uphoff, and J. C. Furtado, 2019: Tropospheric and stratospheric causal pathways between the MJO and NAO. J. Geophys. Res. Atmos., 124, 93569371, https://doi.org/10.1029/2019JD031024.

    • Search Google Scholar
    • Export Citation
  • Bui, H. X., E. D. Maloney, E. M. Riley Dellaripa, and B. Singh, 2020: Wind speed, surface flux, and intraseasonal convection coupling from CYGNSS data. Geophys. Res. Lett., 47, e2020GL090376, https://doi.org/10.1029/2020GL090376.

    • Search Google Scholar
    • Export Citation
  • CLIVAR Madden–Julian Oscillation Working Group, 2009: MJO simulation diagnostics. J. Climate, 22, 30063030, https://doi.org/10.1175/2008JCLI2731.1.

    • Search Google Scholar
    • Export Citation
  • Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 27 January 2022, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Crespo, J. A., D. J. Posselt, and S. Asharaf, 2019: CYGNSS surface heat flux product development. Remote Sens., 11, 2294, https://doi.org/10.3390/rs11192294.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, and M. D. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 49704995, https://doi.org/10.1175/JCLI-D-13-00760.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden–Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., J. J. Benedict, N. P. Klingaman, S. J. Woolnough, and D. A. Randall, 2016: Diagnosing ocean feedbacks to the MJO: SST-modulated surface fluxes and the moist static energy budget. J. Geophys. Res. Atmos., 121, 83508373, https://doi.org/10.1002/2016JD025098.

    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., B. O. Wolding, E. D. Maloney, and D. A. Randall, 2018: Atmospheric mechanisms for MJO decay over the Maritime Continent. J. Geophys. Res. Atmos., 123, 51885204, https://doi.org/10.1029/2017JD026979.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044,2324:AASIMO.2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2020: Slow modes of the equatorial waveguide. J. Atmos. Sci., 77, 15751582, https://doi.org/10.1175/JAS-D-19- 0281.1.

    • Search Google Scholar
    • Export Citation
  • Fuchs, Ž., and D. J. Raymond, 2017: A simple model of intraseasonal oscillations. J. Adv. Model. Earth Syst., 9, 11951211, https://doi.org/10.1002/2017MS000963.

    • Search Google Scholar
    • Export Citation
  • Gleason, S., M. M. Al-Khaldi, C. S. Ruf, D. S. McKague, T. Wang, and A. Russel, 2022: Characterizing and mitigating digital sampling effects on the CYGNSS level 1 calibration. IEEE Trans. Geosci. Remote Sens., 60, 5802812, https://doi.org/10.1109/TGRS.2021.3120026.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, A. O., and X. Jiang, 2019: Distinct propagation characteristics of intraseasonal variability over the tropical West Pacific. J. Geophys. Res. Atmos., 124, 53325351, https://doi.org/10.1029/2018JD029884.

    • Search Google Scholar
    • Export Citation
  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies: Detection of atmospheric rivers. J. Geophys. Res. Atmos., 120, 12 51412 535, https://doi.org/10.1002/2015JD024257.

    • Search Google Scholar
    • Export Citation
  • Henderson, S. A., E. D. Maloney, and E. A. Barnes, 2016: The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking. J. Climate, 29, 45974616, https://doi.org/10.1175/JCLI-D-15-0502.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40, 33373341, https://doi.org/10.1002/grl.50632.

    • Search Google Scholar
    • Export Citation
  • Hsiao, W.-T., E. A. Barnes, E. D. Maloney, S. N. Tulich, J. Dias, and G. N. Kiladis, 2022: Role of the tropics in state-dependent improvements of US West Coast NOAA unified forecast system precipitation forecasts. Geophys. Res. Lett., 49, e2021GL096447, https://doi.org/10.1029/2021GL096447.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG final precipitation L3 1 day 0.1 degree × 0.1 degree V06 (GPM_3IMERGDF). NASA Goddard Earth Sciences Data and Information Services Center, accessed 26 January 2021, https://doi.org/10.5067/GPM/IMERGDF/DAY/06.

  • Inness, P. M., and J. M. Slingo, 2006: The interaction of the Madden–Julian oscillation with the Maritime Continent in a GCM. Quart. J. Roy. Meteor. Soc., 132, 16451667, https://doi.org/10.1256/qj.05.102.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden-Julian Oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Search Google Scholar
    • Export Citation
  • Jones, P. W., 1999: First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Wea. Rev., 127, 22042210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, M.-S. Ahn, R. Neale, J. Lee, and P. J. Gleckler, 2020: The role of the mean state on MJO simulation in CESM2 ensemble simulation. Geophys. Res. Lett., 47, e2020GL089824, https://doi.org/10.1029/2020GL089824.

    • Search Google Scholar
    • Export Citation
  • Kang, D., D. Kim, S. Rushley, and E. D. Maloney, 2022: Seasonal locking of the MJO’s southward detouring of the Maritime Continent: The role of the Australian monsoon. J. Climate, 35, 45534568, https://doi.org/10.1175/JCLI-D-22-0234.1.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2016: Large-scale precipitation tracking and the MJO over the Maritime Continent and Indo-Pacific warm pool. J. Geophys. Res. Atmos., 121, 87558776, https://doi.org/10.1002/2015JD024661.

    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2020: A 20-year climatology of Madden-Julian Oscillation convection: Large-scale precipitation tracking from TRMM-GPM rainfall. J. Geophys. Res. Atmos., 125, e2019JD032142, https://doi.org/10.1029/2019JD032142.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. Emanuel, 2018: Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci., 75, 43374355, https://doi.org/10.1175/JAS-D-18-0152.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian Oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Lee, H.-J., and K.-H. Seo, 2019: Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep., 9, 10761, https://doi.org/10.1038/s41598-019-47150-3.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, R. Joyce, P. Xie, and G. Chen, 2019: Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the Maritime Continent. Geophys. Res. Lett., 46, 30013011, https://doi.org/10.1029/2019GL081962.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 14511460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and S. K. Esbensen, 2005: A modeling study of summertime East Pacific wind-induced ocean–atmosphere exchange in the intraseasonal oscillation. J. Climate, 18, 568584, https://doi.org/10.1175/JCLI-3280.1.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Search Google Scholar
    • Export Citation
  • Nardi, K. M., C. F. Baggett, E. A. Barnes, E. D. Maloney, D. S. Harnos, and L. M. Ciasto, 2020: Skillful all-season S2S prediction of U.S. precipitation using the MJO and QBO. Wea. Forecasting, 35, 21792198, https://doi.org/10.1175/WAF-D-19-0232.1.

    • Search Google Scholar
    • Export Citation
  • Pascual, D., M. P. Clarizia, and C. S. Ruf, 2021: Improved CYGNSS wind speed retrieval using significant wave height correction. Remote Sens., 13, 4313, https://doi.org/10.3390/rs13214313.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and Ž. Fuchs, 2018: The Madden-Julian Oscillation and the Indo-Pacific warm pool. J. Adv. Model. Earth Syst., 10, 951960, https://doi.org/10.1002/2017MS001258.

    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., and E. D. Maloney, 2015: Analysis of MJO wind-flux feedbacks in the Indian Ocean using RAMA buoy observations. J. Meteor. Soc. Japan, 93A, 120, https://doi.org/10.2151/jmsj.2015-021.

    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., 2018: Cyclone Global Navigation Satellite System (CYGNSS). Algorithm Theoretical Basis Document Level 3 Gridded Wind Speed, CYGNSS, 10 pp., https://cygnss.engin.umich.edu/wp-content/uploads/sites/534/2021/07/148-0319-ATBD-L3-Gridded-Wind-Speed_Rev1_Aug2018_release.pdf.

  • Ruf, C. S., and Coauthors, 2016: New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Amer. Meteor. Soc., 97, 385395, https://doi.org/10.1175/BAMS-D-14-00218.1.

    • Search Google Scholar
    • Export Citation
  • Ruf, C. S., S. Asharaf, R. Balasubramaniam, S. Gleason, T. Lang, D. McKague, D. Twigg, and D. Waliser, 2019: In-orbit performance of the constellation of CYGNSS hurricane satellites. Bull. Amer. Meteor. Soc., 100, 20092023, https://doi.org/10.1175/BAMS-D-18-0337.1.

    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, S.-P. Xie, J. Hafner, and J. Shaman, 2013: Remote forcing versus local feedback of East Pacific intraseasonal variability during boreal summer. J. Climate, 26, 35753596, https://doi.org/10.1175/JCLI-D-12-00499.1.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224, https://doi.org/10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sentić, S., Ž. Fuchs-Stone, and D. J. Raymond, 2020: The Madden–Julian Oscillation and mean easterly winds. J. Geophys. Res. Atmos., 125, e2019JD030869, https://doi.org/10.1029/2019JD030869.

    • Search Google Scholar
    • Export Citation
  • Singh, B., and J. L. Kinter, 2020: Tracking of tropical intraseasonal convective anomalies: 1. Seasonality of the tropical intraseasonal oscillations. J. Geophys. Res. Atmos., 125, e2019JD030873, https://doi.org/10.1029/2019JD030873.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2012: An idealized semi-empirical framework for modeling the Madden–Julian Oscillation. J. Atmos. Sci., 69, 16911705, https://doi.org/10.1175/JAS-D-11-0118.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187192, https://doi.org/10.1175/JAS-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and S.-S. Lee, 2017: MJO propagation shaped by zonal asymmetric structures: Results from 24 GCM simulations. J. Climate, 30, 79337952, https://doi.org/10.1175/JCLI-D-16-0873.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2018: Dynamics-oriented diagnostics for the Madden-Julian oscillation. J. Climate, 31173135, https://doi.org/10.1175/JCLI-D-17-0332.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden-Julian Oscillation. Sci. Adv., 5, eaax0220, https://doi.org/10.1126/sciadv.aax0220.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO Index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden–Julian Oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the Maritime Continent. J. Climate, 22, 54335448, https://doi.org/10.1175/2009JCLI2825.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the Continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 658 486 22
Full Text Views 250 223 28
PDF Downloads 288 238 21