• Bader, J., and M. Latif, 2003: The impact of decadal-scale Indian Ocean Sea surface temperature anomalies on Sahelian rainfall and the North Atlantic Oscillation. Geophys. Res. Lett., 30, 2169, https://doi.org/10.1029/2003GL018426.

    • Search Google Scholar
    • Export Citation
  • Bell, B., and Coauthors, 2020: ERA5 monthly averaged data on pressure levels from 1950 to 1978 (preliminary version). C3S CDS, accessed 20 August 2021, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means-preliminary-back-extension?tab=overview.

  • Bethke, I., and Coauthors, 2021: NorCPM1 and its contribution to CMIP6 DCPP. Geosci. Model Dev., 14, 70737116, https://doi.org/10.5194/gmd-14-7073-2021.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2016: What brings rain to the Sahel? Nat. Climate Change, 6, 897898, https://doi.org/10.1038/nclimate3080.

  • Bilbao, R., and Coauthors, 2021: Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth. Earth Syst. Dyn., 12, 173196, https://doi.org/10.5194/esd-12-173-2021.

    • Search Google Scholar
    • Export Citation
  • Borchert, L. F., V. Koul, M. B. Menary, D. J. Befort, D. Swingedouw, G. Sgubin, and J. Mignot, 2021: Skillful decadal prediction of unforced southern European summer temperature variations. Environ. Res. Lett., 16, 104017, https://doi.org/10.1088/1748-9326/ac20f5.

    • Search Google Scholar
    • Export Citation
  • Craig, A. P., R. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y. He, 2005: CPL6: The new extensible, high performance parallel coupler for the Community Climate System Model. Int. J. High Perform. Comput. Appl., 19, 309327, https://doi.org/10.1177/1094342005056117.

    • Search Google Scholar
    • Export Citation
  • DelSole, T., and M. K. Tippett, 2016: Forecast comparison based on random walks. Mon. Wea. Rev., 144, 615626, https://doi.org/10.1175/MWR-D-15-0218.1.

    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. Sutton, 2015: Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat. Climate Change, 5, 757760, https://doi.org/10.1038/nclimate2664.

    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., J. Owen, M. N. Ward, and A. Colman, 1991: Prediction of seasonal rainfall in the Sahel region using empirical and dynamical methods. J. Forecasting, 10, 2156, https://doi.org/10.1002/for.3980100104.

    • Search Google Scholar
    • Export Citation
  • Gaetani, M., and E. Mohino, 2013: Decadal prediction of the Sahelian precipitation in CMIP5 simulations. J. Climate, 26, 77087719, https://doi.org/10.1175/JCLI-D-12-00635.1.

    • Search Google Scholar
    • Export Citation
  • Gaetani, M., B. Fontaine, P. Roucou, and M. Baldi, 2010: Influence of the Mediterranean Sea on the West African monsoon: Intraseasonal variability in numerical simulations. J. Geophys. Res., 115, D24115, https://doi.org/10.1029/2010JD014436.

    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., F. J. Doblas-Reyes, R. J. Haarsma, and I. Polo, 2013: Decadal prediction of the dominant West African monsoon rainfall modes. J. Geophys. Res. Atmos., 118, 52605279, https://doi.org/10.1002/jgrd.50465.

    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, https://doi.org/10.1126/science.1089357.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245272, https://doi.org/10.1007/s00382-012-1481-2.

    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14, 13371359, https://doi.org/10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guemas, V., S. Corti, J. García-Serrano, F. J. Doblas-Reyes, M. Balmaseda, and L. Magnusson, 2013: The Indian Ocean: The region of highest skill worldwide in decadal climate prediction. J. Climate, 26, 726739, https://doi.org/10.1175/JCLI-D-12-00049.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Climate Dyn., 43, 13571379, https://doi.org/10.1007/s00382-013-1951-1.

    • Search Google Scholar
    • Export Citation
  • Harris, I. C., P. D. Jones, and T. Osborn, 2020: CRU TS4.04: Climatic Research Unit (CRU) time-series (TS) version 4.04 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2019). Centre for Environmental Data Analysis, accessed 20 August 2021, https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9.

  • He, Y., and Coauthors, 2017: Reduction of initial shock in decadal predictions using a new initialization strategy. Geophys. Res. Lett., 44, 85388547, https://doi.org/10.1002/2017GL074028.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2020a: A DRP-4DVar-based coupled data assimilation system with a simplified off-line localization technique for decadal predictions. J. Adv. Model. Earth Syst., 12, e2019MS001768, https://doi.org/10.1029/2019MS001768.

    • Search Google Scholar
    • Export Citation
  • He, Y., and Coauthors, 2020b: A new DRP-4DVar-based coupled data assimilation system for decadal predictions using a fast online localization technique. Climate Dyn., 54, 35413559, https://doi.org/10.1007/s00382-020-05190-w.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., T. L. Delworth, J. Lu, K. L. Findell, and T. R. Knutson, 2005: Simulation of Sahel drought in the 20th and 21st centuries. Proc. Natl. Acad. Sci. USA, 102, 17 89117 896, https://doi.org/10.1073/pnas.0509057102.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on pressure levels from 1979 to present. C3S CDS, accessed 2 April 2020, https://doi.org/10.24381/cds.6860a573.

  • Hulme, M., and N. Tosdevin, 1989: The tropical easterly jet and Sudan rainfall: A review. Theor. Appl. Climatol., 39, 179187, https://doi.org/10.1007/BF00867945.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S.-I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155170, https://doi.org/10.1007/s10872-006-0041-y.

    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. 2nd ed. John Wiley and Sons, 296 pp.

  • Kirtman, B., and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 953–1028.

  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013a: The Flexible Global Ocean-Atmosphere-Land System model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013b: Evaluation of Grid-Point Atmospheric Model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci., 30, 855867, https://doi.org/10.1007/s00376-013-2157-5.

    • Search Google Scholar
    • Export Citation
  • Li, L., R. W. Schmitt, C. C. Ummenhofer, and K. B. Karnauskas, 2016: North Atlantic salinity as a predictor of Sahel rainfall. Sci. Adv., 2, e1501588, https://doi.org/10.1126/sciadv.1501588.

    • Search Google Scholar
    • Export Citation
  • Liu, H., P. Lin, Y. Yu, and X. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2. Acta Meteor. Sin., 26, 318329, https://doi.org/10.1007/s13351-012-0305-y.

    • Search Google Scholar
    • Export Citation
  • Lu, J., and T. L. Delworth, 2005: Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett., 32, L22706, https://doi.org/10.1029/2005GL023316.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., B. A. Steinman, D. J. Brouillette, and S. K. Miller, 2021: Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science, 371, 10141019, https://doi.org/10.1126/science.abc5810.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., and A. Dell’Aquila, 2012: Decadal climate variability in the Mediterranean region: Roles of large-scale forcings and regional processes. Climate Dyn., 38, 11291145, https://doi.org/10.1007/s00382-011-1056-7.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Thorncroft, 2014: Sahel rainfall in multimodel CMIP5 decadal hindcasts. Geophys. Res. Lett., 41, 21692175, https://doi.org/10.1002/2014GL059338.

    • Search Google Scholar
    • Export Citation
  • Martin, E. R., C. Thorncroft, and B. B. B. Booth, 2014: The multidecadal Atlantic SST—Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784806, https://doi.org/10.1175/JCLI-D-13-00242.1.

    • Search Google Scholar
    • Export Citation
  • Matei, D., H. Pohlmann, J. Jungclaus, W. Müller, H. Haak, and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, https://doi.org/10.1175/JCLI-D-11-00633.1.

    • Search Google Scholar
    • Export Citation
  • Mignani, S., and R. Rosa, 1995: The moving block bootstrap to assess the accuracy of statistical estimates in Ising model simulations. Comput. Phys. Commun., 92, 203213, https://doi.org/10.1016/0010-4655(95)00114-7.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., S. Janicot, and J. Bader, 2011: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, https://doi.org/10.1007/s00382-010-0867-2.

    • Search Google Scholar
    • Export Citation
  • Mohino, E., N. Keenlyside, and H. Pohlmann, 2016: Decadal prediction of Sahel rainfall: Where does the skill (or lack thereof) come from? Climate Dyn., 47, 35933612, https://doi.org/10.1007/s00382-016-3416-9.

    • Search Google Scholar
    • Export Citation
  • Mudelsee, M., 2010: Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Springer, 474 pp.

  • Nicholson, S. E., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 2013, 43521, https://doi.org/10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Nicolì, D., and Coauthors, 2023: The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system. Geosci. Model Dev., 16, 179197, https://doi.org/10.5194/gmd-16-179-2023.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-478+STR, 257 pp., https://doi.org/10.5065/D6FB50WZ.

  • Palmer, T. N., 1986: Influence of the Atlantic, Pacific and Indian Oceans on Sahel rainfall. Nature, 322, 251253, https://doi.org/10.1038/322251a0.

    • Search Google Scholar
    • Export Citation
  • Park, J.-y., J. Bader, and D. Matei, 2016: Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Climate Change, 6, 941945, https://doi.org/10.1038/nclimate3065.

    • Search Google Scholar
    • Export Citation
  • Ramon, J., L. Lledó, V. Torralba, A. Soret, and F. J. Doblas-Reyes, 2019: What global reanalysis best represents near-surface winds? Quart. J. Roy. Meteor. Soc., 145, 32363251, https://doi.org/10.1002/qj.3616.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2003: The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849862, https://doi.org/10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 25142519, https://doi.org/10.1002/2014GL059637.

    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2011: GPCC full data reanalysis version 6.0° at 2.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, NCAR, accessed 20 August 2021, https://doi.org/10.5065/D6000072.

  • Sheen, K. L., D. M. Smith, N. J. Dunstone, R. Eade, D. P. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales. Nat. Commun., 8, 14966, https://doi.org/10.1038/ncomms14966.

    • Search Google Scholar
    • Export Citation
  • Siegert, S., O. Bellprat, M. Ménégoz, D. B. Stephenson, and F. J. Doblas-Reyes, 2017: Detecting improvements in forecast correlation skill: Statistical testing and power analysis. Mon. Wea. Rev., 145, 437450, https://doi.org/10.1175/MWR-D-16-0037.1.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, https://doi.org/10.1007/s00382-013-1683-2.

    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., G. D. McCarthy, J. Robson, B. Sinha, A. T. Archibald, and L. J. Gray, 2018: Atlantic multidecadal variability and the U.K. ACSIS program. Bull. Amer. Meteor. Soc., 99, 415425, https://doi.org/10.1175/BAMS-D-16-0266.1.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H. L., N. Ishizaki, and A. Kitoh, 2004: Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus, 56A, 250269, https://doi.org/10.3402/tellusa.v56i3.14410.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • van der Linden, P., and J. F. B. Mitchell, Eds., 2009: ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre Rep., 164 pp., https://ensembles-eu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf.

  • van Oldenborgh, G. J., F. J. Doblas-Reyes, B. Wouters, and W. Hazeleger, 2012: Decadal prediction skill in a multi-model ensemble. Climate Dyn., 38, 12631280, https://doi.org/10.1007/s00382-012-1313-4.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and Coauthors, 2016: Sahel decadal rainfall variability and the role of model horizontal resolution. Geophys. Res. Lett., 43, 326333, https://doi.org/10.1002/2015GL066690.

    • Search Google Scholar
    • Export Citation
  • Villamayor, J., and E. Mohino, 2015: Robust Sahel drought due to the interdecadal Pacific oscillation in CMIP5 simulations. Geophys. Res. Lett., 42, 12141222, https://doi.org/10.1002/2014GL062473.

    • Search Google Scholar
    • Export Citation
  • Volpi, D., and Coauthors, 2021: A novel initialization technique for decadal climate predictions. Front. Climate, 3, 681127, https://doi.org/10.3389/fclim.2021.681127.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27, 715727, https://doi.org/10.1007/s00376-009-9122-3.

    • Search Google Scholar
    • Export Citation
  • Wang, B., J. Liu, L. Liu, S. Xu, and W. Huang, 2018: An approach to localization for ensemble-based data assimilation. PLOS ONE, 13, e0191088, https://doi.org/10.1371/journal.pone.0191088.

    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2019: Frequentist statistical inference. Statistical Methods in the Atmospheric Sciences, 4th ed. D. S. Wilks, Ed., Elsevier, 143–207.

  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, https://doi.org/10.1175/JCLI-D-11-00595.1.

    • Search Google Scholar
    • Export Citation
  • Yeager, S. G., and Coauthors, 2018: Predicting near-term changes in the Earth system: A large ensemble of initialized decadal prediction simulations using the Community Earth System Model. Bull. Amer. Meteor. Soc., 99, 18671886, https://doi.org/10.1175/BAMS-D-17-0098.1.

    • Search Google Scholar
    • Export Citation
  • Yu, Y., and Coauthors, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641654, https://doi.org/10.1007/s00376-008-0641-0.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 334 335 22
Full Text Views 143 143 14
PDF Downloads 149 149 11

Role of Ocean Initialization in Skillful Prediction of Sahel Rainfall on the Decadal Time Scale

Yujun HeaState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Yujun He in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2238-0783
,
Bin WangaState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bDepartment of Earth System Science, Tsinghua University, Beijing, China
cCollege of Ocean Science, University of Chinese Academy of Sciences, Beijing, China
dSouthern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
,
Lijuan LiaState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijuan Li in
Current site
Google Scholar
PubMed
Close
,
Juanjuan LiuaState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Juanjuan Liu in
Current site
Google Scholar
PubMed
Close
,
Yong WangbDepartment of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yong Wang in
Current site
Google Scholar
PubMed
Close
, and
Feifei LibDepartment of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Feifei Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sahel summer rainfall has undergone persistent drought from the 1970s to 1980s, causing severe human life and economic losses. Many studies pointed out that the decadal variations of Sahel rainfall are mainly modulated by low-frequency sea surface temperature (SST) variations in different ocean basins. However, how this modulation contributes to the decadal prediction skill of Sahel rainfall remains unknown. This study provided an affirmative response using the decadal hindcasts initialized by a dimensional-reduced projection four-dimensional variational (DRP-4DVar) data assimilation method to incorporate only ocean analysis data into the gridpoint version 2 of the Flexible Global Ocean–Atmosphere–Land System Model (FGOALS-g2). The hindcasts reveal the benefits of the DRP-4DVar approach for improving the Sahel rainfall decadal prediction skill measured by the anomaly correlation coefficient (ACC), root-mean-square error, ACC difference, and mean square skill score. The decadal variations of SSTs in the Atlantic, Mediterranean Sea, Indian Ocean, and Pacific as well as correct representations of the associated Sahel rainfall–SST relationships are well predicted, thus leading to skillful predictions of Sahel rainfall. In particular, the initialization of SSTs in the Atlantic and Mediterranean Sea plays a more important role in skillful Sahel rainfall predictions than in the other basins. The prediction skill of Sahel rainfall by the FGOALS-g2 prediction system is significantly higher than those by most phase 5 and 6 of the Coupled Model Intercomparison Project (CMIP5&6) prediction systems initialized only with ocean analysis data. This result is likely attributed to a more accurate relationship between Sahel rainfall and SST by the FGOALS-g2 prediction system than by the CMIP5&6 prediction systems.

Significance Statement

Previous studies have shown limited success in predicting Sahel rainfall. By using an advanced coupled data assimilation method constrained only by ocean observational data, we achieve a high decadal prediction skill for Sahel rainfall. The successful prediction is attributed to accurately predicted decadal variations of sea surface temperatures in the Atlantic, Mediterranean Sea, Indian Ocean, and Pacific as well as their relationships with Sahel rainfall. Our results can provide references for future decadal predictions of Sahel rainfall and motivate the need to evaluate the contributions of the initialization of the ocean versus the other climate components (e.g., atmosphere or land) to Sahel rainfall predictions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Wang, wab@lasg.iap.ac.cn

Abstract

Sahel summer rainfall has undergone persistent drought from the 1970s to 1980s, causing severe human life and economic losses. Many studies pointed out that the decadal variations of Sahel rainfall are mainly modulated by low-frequency sea surface temperature (SST) variations in different ocean basins. However, how this modulation contributes to the decadal prediction skill of Sahel rainfall remains unknown. This study provided an affirmative response using the decadal hindcasts initialized by a dimensional-reduced projection four-dimensional variational (DRP-4DVar) data assimilation method to incorporate only ocean analysis data into the gridpoint version 2 of the Flexible Global Ocean–Atmosphere–Land System Model (FGOALS-g2). The hindcasts reveal the benefits of the DRP-4DVar approach for improving the Sahel rainfall decadal prediction skill measured by the anomaly correlation coefficient (ACC), root-mean-square error, ACC difference, and mean square skill score. The decadal variations of SSTs in the Atlantic, Mediterranean Sea, Indian Ocean, and Pacific as well as correct representations of the associated Sahel rainfall–SST relationships are well predicted, thus leading to skillful predictions of Sahel rainfall. In particular, the initialization of SSTs in the Atlantic and Mediterranean Sea plays a more important role in skillful Sahel rainfall predictions than in the other basins. The prediction skill of Sahel rainfall by the FGOALS-g2 prediction system is significantly higher than those by most phase 5 and 6 of the Coupled Model Intercomparison Project (CMIP5&6) prediction systems initialized only with ocean analysis data. This result is likely attributed to a more accurate relationship between Sahel rainfall and SST by the FGOALS-g2 prediction system than by the CMIP5&6 prediction systems.

Significance Statement

Previous studies have shown limited success in predicting Sahel rainfall. By using an advanced coupled data assimilation method constrained only by ocean observational data, we achieve a high decadal prediction skill for Sahel rainfall. The successful prediction is attributed to accurately predicted decadal variations of sea surface temperatures in the Atlantic, Mediterranean Sea, Indian Ocean, and Pacific as well as their relationships with Sahel rainfall. Our results can provide references for future decadal predictions of Sahel rainfall and motivate the need to evaluate the contributions of the initialization of the ocean versus the other climate components (e.g., atmosphere or land) to Sahel rainfall predictions.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bin Wang, wab@lasg.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 3.37 MB)
Save