Evaluation of Changes in Dry and Wet Precipitation Extremes in Warmer Climates Using a Passive Water Vapor Modeling Approach

Marie-Pier Labonté aMcGill University, Montreal, Quebec, Canada

Search for other papers by Marie-Pier Labonté in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0738-3940
and
Timothy M. Merlis bPrinceton University, Princeton, New Jersey

Search for other papers by Timothy M. Merlis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hydroclimatic extremes, such as heavy daily rainfall and dry spells, are expected to intensify under anthropogenic warming. Often, these changes are diagnostically related to thermodynamic increases in humidity with warming. Here, we develop a framework that uses an online calculation of the thermodynamically induced changes of the full precipitation distribution with warming in an idealized moist atmospheric general circulation model. Two water vapor variables, the standard active one and an additional passive one (i.e., no latent heat release when condensation occurs), are advected by the resolved circulation. The passive water vapor is thermodynamically perturbed by modifying the saturation specific humidity used in the calculation of its condensation tendency and surface evaporation. The difference between the precipitation of the perturbed passive water vapor relative to the control one corresponds to the thermodynamic component of precipitation change, which can be evaluated for the entire distribution. Here, we evaluate wet and dry extremes. Our simulations have tropical increases and higher-latitude decreases of dry spell’s length (defined as the maximum consecutive dry days), as found in the zonal mean of comprehensive models. This simulated thermodynamically induced intensification of dry spells in the tropics arises from the decreased contrast between sea surface temperature and surface air temperature with warming. There is a simulated increase in heavy daily rainfall (e.g., the 99.9th percentile of the daily precipitation distribution) at all latitudes that differ modestly from a previous theory that assumes moist-adiabatic stratification. Consistent with this theory, increased warming aloft slightly dampens the simulated increase.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marie-Pier Labonté, marie-pier.labonte@mail.mcgill.ca

Abstract

Hydroclimatic extremes, such as heavy daily rainfall and dry spells, are expected to intensify under anthropogenic warming. Often, these changes are diagnostically related to thermodynamic increases in humidity with warming. Here, we develop a framework that uses an online calculation of the thermodynamically induced changes of the full precipitation distribution with warming in an idealized moist atmospheric general circulation model. Two water vapor variables, the standard active one and an additional passive one (i.e., no latent heat release when condensation occurs), are advected by the resolved circulation. The passive water vapor is thermodynamically perturbed by modifying the saturation specific humidity used in the calculation of its condensation tendency and surface evaporation. The difference between the precipitation of the perturbed passive water vapor relative to the control one corresponds to the thermodynamic component of precipitation change, which can be evaluated for the entire distribution. Here, we evaluate wet and dry extremes. Our simulations have tropical increases and higher-latitude decreases of dry spell’s length (defined as the maximum consecutive dry days), as found in the zonal mean of comprehensive models. This simulated thermodynamically induced intensification of dry spells in the tropics arises from the decreased contrast between sea surface temperature and surface air temperature with warming. There is a simulated increase in heavy daily rainfall (e.g., the 99.9th percentile of the daily precipitation distribution) at all latitudes that differ modestly from a previous theory that assumes moist-adiabatic stratification. Consistent with this theory, increased warming aloft slightly dampens the simulated increase.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marie-Pier Labonté, marie-pier.labonte@mail.mcgill.ca
Save
  • Abbott, T. H., T. W. Cronin, and T. Beucler, 2020: Convective dynamics and the response of precipitation extremes to warming in radiative–convective equilibrium. J. Atmos. Sci., 77, 16371660, https://doi.org/10.1175/JAS-D-19-0197.1.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and D. A. Stainforth, 2002: Towards objective probabilistic climate forecasting. Nature, 419, 228, https://doi.org/10.1038/nature01092a.

    • Search Google Scholar
    • Export Citation
  • Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149165, https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Ming, N. D. Singer, and J. Lu, 2011: Testing the Clausius–Clapeyron constraint on the aerosol-induced changes in mean and extreme precipitation. Geophys. Res. Lett., 38, L04807, https://doi.org/10.1029/2010GL046435.

    • Search Google Scholar
    • Export Citation
  • Chen, G., J. Norris, J. D. Neelin, J. Lu, L. R. Leung, and K. Sakaguchi, 2019: Thermodynamic and dynamic mechanisms for hydrological cycle intensification over the full probability distribution of precipitation events. J. Atmos. Sci., 76, 497516, https://doi.org/10.1175/JAS-D-18-0067.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colose, C. M., A. N. LeGrande, and M. Vuille, 2016: The influence of volcanic eruptions on the climate of tropical South America during the last millennium in an isotope-enabled general circulation model. Climate Past, 12, 961979, https://doi.org/10.5194/cp-12-961-2016.

    • Search Google Scholar
    • Export Citation
  • Dai, A., T. Zhao, and J. Chen, 2018: Climate change and drought: A precipitation and evaporation perspective. Curr. Climate Change Rep., 4, 301312, https://doi.org/10.1007/s40641-018-0101-6.

    • Search Google Scholar
    • Export Citation
  • Douville, H., and Coauthors, 2021: Water cycle changes. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1055–1210.

  • Emanuel, K., 2017: Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA, 114, 12 68112 684, https://doi.org/10.1073/pnas.1716222114.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nat. Climate Change, 3, 10331038, https://doi.org/10.1038/nclimate2051.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Search Google Scholar
    • Export Citation
  • Galewsky, J., A. Sobel, and I. Held, 2005: Diagnosis of subtropical humidity dynamics using tracers of last saturation. J. Atmos. Sci., 62, 33533367, https://doi.org/10.1175/JAS3533.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2014: Extracting microphysical impacts in large-eddy simulations of shallow convection. J. Atmos. Sci., 71, 44934499, https://doi.org/10.1175/JAS-D-14-0231.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., 2015: Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci., 72, 24462464, https://doi.org/10.1175/JAS-D-14-0307.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Iribarne, J., and W. Godson, 1981: Atmospheric Thermodynamics. 2nd ed. D. Reidel Publishing Company, 260 pp.

  • Jeevanjee, N., P. Hassanzadeh, S. Hill, and A. Sheshadri, 2017: A perspective on climate model hierarchies. J. Adv. Model. Earth Syst., 9, 17601771, https://doi.org/10.1002/2017MS001038.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and K.-M. Kim, 2015: Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl. Acad. Sci. USA, 112, 36303635, https://doi.org/10.1073/pnas.1418682112.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-E., K. Johnson, and I. Fung, 2009: Precipitation over South America during the last glacial maximum: An analysis of the “amount effect” with a water isotope-enabled general circulation model. Geophys. Res. Lett., 36, L19701, https://doi.org/10.1029/2009GL039265.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and P. A. O’Gorman, 2020: Response of vertical velocities in extratropical precipitation extremes to climate change. J. Climate, 33, 71257139, https://doi.org/10.1175/JCLI-D-19-0766.1.

    • Search Google Scholar
    • Export Citation
  • Lintner, B. R., M. Biasutti, N. S. Diffenbaugh, J.-E. Lee, M. J. Niznik, and K. L. Findell, 2012: Amplification of wet and dry month occurrence over tropical land regions in response to global warming. J. Geophys. Res., 117, D11106, https://doi.org/10.1029/2012JD017499.

    • Search Google Scholar
    • Export Citation
  • Lu, J., L. Ruby Leung, Q. Yang, G. Chen, W. D. Collins, F. Li, Z. Jason Hou, and X. Feng, 2014: The robust dynamical contribution to precipitation extremes in idealized warming simulations across model resolutions. Geophys. Res. Lett., 41, 29712978, https://doi.org/10.1002/2014GL059532.

    • Search Google Scholar
    • Export Citation
  • Maher, P., and Coauthors, 2019: Model hierarchies for understanding atmospheric circulation. Rev. Geophys., 57, 250280, https://doi.org/10.1029/2018RG000607.

    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part I: Aquaplanets. J. Climate, 26, 740753, https://doi.org/10.1175/JCLI-D-11-00716.1.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and I. M. Held, 2018: Modeling water vapor and clouds as passive tracers in an idealized GCM. J. Climate, 31, 775786, https://doi.org/10.1175/JCLI-D-16-0812.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., P. A. O’Gorman, and L. E. Back, 2011: Intensification of precipitation extremes with warming in a cloud-resolving model. J. Climate, 24, 27842800, https://doi.org/10.1175/2011JCLI3876.1.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., C. Chou, and H. Su, 2003: Tropical drought regions in global warming and El Niño teleconnections. Geophys. Res. Lett., 30, 2275, https://doi.org/10.1029/2003GL018625.

    • Search Google Scholar
    • Export Citation
  • Nie, J., P. Dai, and A. H. Sobel, 2020: Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity. Proc. Natl. Acad. Sci. USA, 117, 87578763, https://doi.org/10.1073/pnas.1913584117.

    • Search Google Scholar
    • Export Citation
  • Norris, J., G. Chen, and C. Li, 2020: Dynamic amplification of subtropical extreme precipitation in a warming climate. Geophys. Res. Lett., 47, e87200, https://doi.org/10.1029/2020GL087200.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, https://doi.org/10.1175/2009JCLI2701.1.

    • Search Google Scholar
    • Export Citation
  • Orlowsky, B., and S. I. Seneviratne, 2012: Global changes in extreme events: Regional and seasonal dimension. Climatic Change, 110, 669696, https://doi.org/10.1007/s10584-011-0122-9.

    • Search Google Scholar
    • Export Citation
  • Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dyn., 28, 351363, https://doi.org/10.1007/s00382-006-0180-2.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., P. A. O’Gorman, and E. M. Fischer, 2017: Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Climate Change, 7, 423427, https://doi.org/10.1038/nclimate3287.

    • Search Google Scholar
    • Export Citation
  • Reed, K. A., A. M. Stansfield, M. F. Wehner, and C. M. Zarzycki, 2020: Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv., 6, eaaw9253, https://doi.org/10.1126/sciadv.aaw9253.

    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118, https://doi.org/10.1029/2008JD010561.

    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. Frierson, 2012: Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Climate, 25, 43304347, https://doi.org/10.1175/JCLI-D-11-00393.1.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos., 118, 24732493, https://doi.org/10.1002/jgrd.50188.

    • Search Google Scholar
    • Export Citation
  • Tandon, N. F., X. Zhang, and A. H. Sobel, 2018: Understanding the dynamics of future changes in extreme precipitation intensity. Geophys. Res. Lett., 45, 28702878, https://doi.org/10.1002/2017GL076361.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., C. A. Davis, and J. Fasullo, 2007: Water and energy budgets of hurricanes: Case studies of Ivan and Katrina. J. Geophys. Res., 112, D23106, https://doi.org/10.1029/2006JD008303.

    • Search Google Scholar
    • Export Citation
  • Wright, J. S., A. Sobel, and J. Galewsky, 2010: Diagnosis of zonal mean relative humidity changes in a warmer climate. J. Climate, 23, 45564569, https://doi.org/10.1175/2010JCLI3488.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 575 575 21
Full Text Views 153 153 11
PDF Downloads 172 172 13