Changes and Mechanisms of Long-Lived Warm Blobs in the Northeast Pacific in Low-Warming Climates

Cong Tang aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Cong Tang in
Current site
Google Scholar
PubMed
Close
,
Jian Shi aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Jian Shi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-8042-7789
,
Yu Zhang aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yu Zhang in
Current site
Google Scholar
PubMed
Close
,
Shengpeng Wang aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Shengpeng Wang in
Current site
Google Scholar
PubMed
Close
,
Chun Li aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Chun Li in
Current site
Google Scholar
PubMed
Close
,
Riyu Lu cState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
dCollege of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing, China

Search for other papers by Riyu Lu in
Current site
Google Scholar
PubMed
Close
,
Tengfei Yu aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Tengfei Yu in
Current site
Google Scholar
PubMed
Close
,
Ruiqi Wang aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Ruiqi Wang in
Current site
Google Scholar
PubMed
Close
, and
Ziyan Chen aFrontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
bQingdao National Laboratory for Marine Science and Technology, Qingdao, China
eCollege of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

Search for other papers by Ziyan Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In the last decade, three persistent warm blob events (2013/14, 2015, and 2019/20) in the northeast Pacific (NEP) have been hotly debated given their substantial effects on climate, ecosystems, and the socioeconomy. This study investigates the changes of such long-lived NEP warm blobs in terms of their intensity, duration, structure, and occurrence frequency under Shared Socioeconomic Pathway (SSP) 119 and 126 low-warming scenarios of phase 6 of the Coupled Model Intercomparison Project. Results show that the peak timing of the warm blobs shifts from the cold season to boreal summer. For the summer-peak warm blobs, their maximum intensity increases by 6.7% (10.0%) under the SSP119 (SSP126) scenario, but their duration reduces by 31.0% (20.4%) under the SSP119 (SSP126) scenario. In terms of their vertical structure, the most pronounced temperature signal is located at the surface, and their vertical penetration is mostly confined to the mixed layer, which becomes shallower in warming climates. Based on a mixed layer heat budget analysis, we reveal that a shoaling mixed layer depth plays a dominant role in driving the stronger intensity of the warm blobs under low-warming scenarios, while the stronger magnitude of ocean heat loss after their peaks explains the faster decay and thus shorter duration. Regarding occurrence frequency, the total number of the warm blobs does not change robustly in the low-warming climates. Following the summer peak of the warm blobs, extreme El Niño events may occur more frequently under the low-warming scenarios, possibly through stronger air–sea coupling induced by tropical Pacific southwesterly anomalies.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Shi, shijian@ouc.edu.cn

Abstract

In the last decade, three persistent warm blob events (2013/14, 2015, and 2019/20) in the northeast Pacific (NEP) have been hotly debated given their substantial effects on climate, ecosystems, and the socioeconomy. This study investigates the changes of such long-lived NEP warm blobs in terms of their intensity, duration, structure, and occurrence frequency under Shared Socioeconomic Pathway (SSP) 119 and 126 low-warming scenarios of phase 6 of the Coupled Model Intercomparison Project. Results show that the peak timing of the warm blobs shifts from the cold season to boreal summer. For the summer-peak warm blobs, their maximum intensity increases by 6.7% (10.0%) under the SSP119 (SSP126) scenario, but their duration reduces by 31.0% (20.4%) under the SSP119 (SSP126) scenario. In terms of their vertical structure, the most pronounced temperature signal is located at the surface, and their vertical penetration is mostly confined to the mixed layer, which becomes shallower in warming climates. Based on a mixed layer heat budget analysis, we reveal that a shoaling mixed layer depth plays a dominant role in driving the stronger intensity of the warm blobs under low-warming scenarios, while the stronger magnitude of ocean heat loss after their peaks explains the faster decay and thus shorter duration. Regarding occurrence frequency, the total number of the warm blobs does not change robustly in the low-warming climates. Following the summer peak of the warm blobs, extreme El Niño events may occur more frequently under the low-warming scenarios, possibly through stronger air–sea coupling induced by tropical Pacific southwesterly anomalies.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Shi, shijian@ouc.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 4.79 MB)
Save
  • Alexander, M. A., and C. Penland, 1996: Variability in a mixed layer ocean model driven by stochastic atmospheric forcing. J. Climate, 9, 24242442, https://doi.org/10.1175/1520-0442(1996)009<2424:VIAMLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., 2019: The Pacific meridional mode and ENSO: A review. Curr. Climate Change Rep., 5, 296307, https://doi.org/10.1007/s40641-019-00142-x.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., Y. Kosaka, W. Zhou, Y. Zhang, S.-P. Xie, and A. J. Miller, 2019: The North Pacific pacemaker effect on historical ENSO and its mechanisms. J. Climate, 32, 76437661, https://doi.org/10.1175/JCLI-D-19-0040.1.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., A. J. Miller, S.-P. Xie, and Y. Kosaka, 2020: Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun., 11, 1903, https://doi.org/10.1038/s41467-020-15820-w.

    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., M. A. Alexander, A. Capotondi, C. Deser, K. B. Karnauskas, A. J. Miller, and N. J. Mantua, 2021: Are long-term changes in mixed layer depth influencing North Pacific marine heatwaves? Bull. Amer. Meteor. Soc., 102 (1), S59S66, https://doi.org/10.1175/BAMS-D-20-0144.1.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, https://doi.org/10.1002/2015GL063306.

    • Search Google Scholar
    • Export Citation
  • Capotondi, A., P. D. Sardeshmukh, E. Di Lorenzo, A. C. Subramanian, and A. J. Miller, 2019: Predictability of U.S. West Coast ocean temperatures is not solely due to ENSO. Sci. Rep., 9, 10993, https://doi.org/10.1038/s41598-019-47400-4.

    • Search Google Scholar
    • Export Citation
  • Cavole, L. M., and Coauthors, 2016: Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography, 29, 273285, https://doi.org/10.5670/oceanog.2016.32.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Shi, and C. Li, 2021a: Two types of warm blobs in the Northeast Pacific and their potential effect on the El Niño. Int. J. Climatol., 41, 28102827, https://doi.org/10.1002/joc.6991.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., J. Shi, Q. Liu, H. Chen, and C. Li, 2021b: A persistent and intense warm blob event in Northeast Pacific during 2019–2020. Geophys. Res. Lett., 48, e2021GL093239, https://doi.org/10.1029/2021GL093239.

    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2010: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391397, https://doi.org/10.1038/ngeo868.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., N. A. Pelland, S. R. Emerson, and W. R. Crawford, 2015: Estimating diffusivity from the mixed layer heat and salt balances in the North Pacific. J. Geophys. Res. Oceans, 120, 73467362, https://doi.org/10.1002/2015JC011010.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change, 6, 10421047, https://doi.org/10.1038/nclimate3082.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Search Google Scholar
    • Export Citation
  • Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360364, https://doi.org/10.1038/s41586-018-0383-9.

    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., M. R. Fewings, and M. García-Reyes, 2017: Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 Northeast Pacific marine heatwave. Geophys. Res. Lett., 44, 312319, https://doi.org/10.1002/2016GL071039.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Search Google Scholar
    • Export Citation
  • Hobday, A. J., and Coauthors, 2016: A hierarchical approach to defining marine heatwaves. Prog. Oceanogr., 141, 227238, https://doi.org/10.1016/j.pocean.2015.12.014.

    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., and J. M. Wallace, 1981: Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev., 109, 813829, https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, Z.-Z., A. Kumar, B. Jha, J. Zhu, and B. Huang, 2017: Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Climate, 30, 689702, https://doi.org/10.1175/JCLI-D-16-0348.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., G. C. Johnson, H. V. Dosser, and T. Ross, 2018: Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett., 45, 97579764, https://doi.org/10.1029/2018GL078971.

    • Search Google Scholar
    • Export Citation
  • Joh, Y., and E. Di Lorenzo, 2017: Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 44, 11 66311 671, https://doi.org/10.1002/2017GL075930.

    • Search Google Scholar
    • Export Citation
  • Jones, T., and Coauthors, 2018: Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett., 45, 31933202, https://doi.org/10.1002/2017GL076164.

    • Search Google Scholar
    • Export Citation
  • King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5°C and 2°C of global warming. Nat. Climate Change, 7, 412416, https://doi.org/10.1038/nclimate3296.

    • Search Google Scholar
    • Export Citation
  • Laufkötter, C., J. Zscheischler, and T. L. Fröliche, 2020: High-impact marine heatwaves attributable to human-induced global warming. Science, 369, 16211625, https://doi.org/10.1126/science.aba0690.

    • Search Google Scholar
    • Export Citation
  • Li, C., and L. Wu, 2013: Dynamic linkage between the North Pacific and the tropical Pacific: Atmosphere–ocean coupling. Adv. Atmos. Sci., 30, 306314, https://doi.org/10.1007/s00376-012-2023-x.

    • Search Google Scholar
    • Export Citation
  • Li, C., L. Wu, Q. Wang, L. Qu, and L. Zhang, 2009: An intimate coupling of ocean–atmospheric interaction over the extratropical North Atlantic and Pacific. Climate Dyn., 32, 753765, https://doi.org/10.1007/s00382-009-0529-4.

    • Search Google Scholar
    • Export Citation
  • Liang, Y.-C., J.-Y. Yu, E. S. Saltzman, and F. Wang, 2017: Linking the tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob. J. Climate, 30, 90419057, https://doi.org/10.1175/JCLI-D-17-0149.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Sun, F. Kucharski, J. Li, C. Wang, and R. Ding, 2021: The North Pacific Blob acts to increase the predictability of the Atlantic warm pool. Environ. Res. Lett., 16, 064034, https://doi.org/10.1088/1748-9326/ac0030.

    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., and Coauthors, 2016: An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett., 43, 10 36610 376, https://doi.org/10.1002/2016GL070023.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., C. R. Mechoso, G. V. Cesana, M. J. DeFlorio, and D. E. Waliser, 2018: Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett., 45, 43454352, https://doi.org/10.1029/2018GL078242.

    • Search Google Scholar
    • Export Citation
  • Nangombe, S., T. Zhou, W. Zhang, B. Wu, S. Hu, L. Zou, and D. Li, 2018: Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nat. Climate Change, 8, 375380, https://doi.org/10.1038/s41558-018-0145-6.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2017: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change, 42, 169180, https://doi.org/10.1016/j.gloenvcha.2015.01.004.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., and Coauthors, 2018: Longer and more frequent marine heatwaves over the past century. Nat. Commun., 9, 1324, https://doi.org/10.1038/s41467-018-03732-9.

    • Search Google Scholar
    • Export Citation
  • Piatt, J. F., and Coauthors, 2020: Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE, 15, e0226087, https://doi.org/10.1371/journal.pone.0226087.

    • Search Google Scholar
    • Export Citation
  • Planton, Y., J. Vialard, E. Guilyardi, M. Lengaigne, and T. Izumo, 2018: Western Pacific oceanic heat content: A better predictor of La Niña than of El Niño. Geophys. Res. Lett., 45, 98249833, https://doi.org/10.1029/2018GL079341.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 34833517, https://doi.org/10.1175/JCLI3812.1.

  • Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Search Google Scholar
    • Export Citation
  • Shi, H., and Coauthors, 2022: Global decline in ocean memory over the 21st century. Sci. Adv., 8, eabm3468, https://doi.org/10.1126/sciadv.abm3468.

    • Search Google Scholar
    • Export Citation
  • Shi, J., C. Tang, Q. Liu, Y. Zhang, H. Yang, and C. Li, 2022: Role of mixed layer depth in the location and development of the Northeast Pacific warm blobs. Geophys. Res. Lett., 49, e2022GL098849, https://doi.org/10.1029/2022GL098849.

    • Search Google Scholar
    • Export Citation
  • Su, J., R. Zhang, X. Rong, Q. Min, and C. Zhu, 2018: Sea surface temperature in the subtropical Pacific boosted the 2015 El Niño and hindered the 2016 La Niña. J. Climate, 31, 877893, https://doi.org/10.1175/JCLI-D-17-0379.1.

    • Search Google Scholar
    • Export Citation
  • Tang, C., J. Shi, and C. Li, 2021: Long-lived cold blobs in the Northeast Pacific linked with the tropical La Niña. Climate Dyn., 57, 223237, https://doi.org/10.1007/s00382-021-05706-y.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. O. R. Y., 1976: Climatological numerical models of the surface mixed layer of the ocean. J. Phys. Oceanogr., 6, 496503, https://doi.org/10.1175/1520-0485(1976)006<0496:CNMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • UNFCCC, 2015: Adoption of the Paris Agreement I: Proposal by the President. United Nations Office Note FCCC/CP/2015/L.9, 31 pp., https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf.

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 39233926, https://doi.org/10.1029/2001GL013435.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 26682675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., P. A. Bieniek, B. Brettschneider, E. S. Euskirchen, R. Lader, and R. L. Thoman, 2017: The exceptionally warm winter of 2015/16 in Alaska. J. Climate, 30, 20692088, https://doi.org/10.1175/JCLI-D-16-0473.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and Coauthors, 2022: Changing ocean seasonal cycle escalates destructive marine heatwaves in a warming climate. Environ. Res. Lett., 17, 054024, https://doi.org/10.1088/1748-9326/ac6685.

    • Search Google Scholar
    • Export Citation
  • Whitney, F. A., 2015: Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett., 42, 428431, https://doi.org/10.1002/2014GL062634.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470, https://doi.org/10.1175/1520-0442-12.1.64.

    • Search Google Scholar
    • Export Citation
  • Xu, T., M. Newman, A. Capotondi, and E. Di Lorenzo, 2021: The continuum of Northeast Pacific marine heatwaves and their relationship to the tropical Pacific. Geophys. Res. Lett., 48, e2020GL090661, https://doi.org/10.1029/2020GL090661.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., G. Zeng, C. Li, and X. Yang, 2020: Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Climate Dyn., 54, 30033020, https://doi.org/10.1007/s00382-020-05155-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., G. Zeng, X. Yang, and Z. Jiang, 2021: Future changes in extreme high temperature over China at 1.5°C–5°C global warming based on CMIP6 simulations. Adv. Atmos. Sci., 38, 253267, https://doi.org/10.1007/s00376-020-0182-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S.-P. Xie, Y. Kosaka, and J.-C. Yang, 2018: Pacific decadal oscillation: Tropical Pacific forcing versus internal variability. J. Climate, 31, 82658279, https://doi.org/10.1175/JCLI-D-18-0164.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, S., T. Zhou, and X. Chen, 2020: Consistency of extreme temperature changes in China under a historical half-degree warming increment across different reanalysis and observational datasets. Climate Dyn., 54, 24652479, https://doi.org/10.1007/s00382-020-05128-2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 780 780 133
Full Text Views 260 260 25
PDF Downloads 267 267 26