The Stratosphere–Troposphere Oscillation as the Dominant Intraseasonal Coupling Mode between the Stratosphere and Troposphere

Xiaocen Shen aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaocen Shen in
Current site
Google Scholar
PubMed
Close
,
Lin Wang aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
bCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Lin Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3557-1853
,
Adam A. Scaife cMet Office Hadley Centre, Exeter, United Kingdom
dCollege of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Search for other papers by Adam A. Scaife in
Current site
Google Scholar
PubMed
Close
,
Steven C. Hardiman cMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Steven C. Hardiman in
Current site
Google Scholar
PubMed
Close
, and
Peiqiang Xu aCenter for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Peiqiang Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Changes in the stratospheric polar vortex (SPV) can remarkably impact tropospheric circulation. Based on the diagnosis of reanalysis data, this study finds that the location shift rather than the strength change dominates the intraseasonal variability of SPV. Further analysis suggests that it couples well with the tropospheric circulation, forming an intraseasonal stratosphere–troposphere oscillation (STO). The STO shows periodic westward propagation throughout its life cycle and has a deep structure extending from the troposphere to the stratosphere. It reflects the movement of the SPV toward North America, then the North Pacific, Eurasia, and the North Atlantic, and causes significant changes in surface air temperature over North America and East Asia. The mechanism of the STO involves Rossby wave propagation between the troposphere and stratosphere and cross-scale interactions in the troposphere. Upward Rossby wave propagation from the troposphere over East Asia maintains the STO’s stratospheric component, and the reflection of these waves back to the troposphere contributes substantially to the STO’s tropospheric center over North America. Meanwhile, the linear and nonlinear processes explain the STO’s westward propagation in the troposphere, which facilities vertical wave propagation changes. The STO unifies the SPV shifts, the retrograding tropospheric disturbances, and the wave coupling processes into one framework and provides a holistic view for a better understanding of the intraseasonal stratosphere–troposphere coupling. Given its oscillating nature, time scale, and widespread surface response, the STO may be a potential source of predictability for the subseasonal-to-seasonal prediction.

Significance Statement

Stratospheric circulation plays a vital role in influencing tropospheric weather and climate, but its variability and coupling with the troposphere have not been fully understood for the intraseasonal time scale. This study finds that the Northern Annular Mode is the leading mode of variability in the extratropical Northern Hemisphere stratosphere on time scales longer than 60 days, which reflects the changes in the intensity of the stratospheric polar vortex. In contrast, the shift of the stratospheric polar vortex excels as the leading mode on time scales shorter than 60 days and is identified as a stratosphere–troposphere oscillation (STO) phenomenon. In the stratosphere, the STO is characterized by the shift of the polar vortex and rotates clockwise with time. In the troposphere, the STO is manifested as a large-scale westward-propagating circulation in the midlatitudes, with significant near-surface temperature anomalies across the continents. The formation of the STO is further attributed to the vertical and horizontal Rossby wave propagation. As STO is a periodic oscillation, it may serve as a potential predictability source for subseasonal-to-seasonal climate prediction.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn

Abstract

Changes in the stratospheric polar vortex (SPV) can remarkably impact tropospheric circulation. Based on the diagnosis of reanalysis data, this study finds that the location shift rather than the strength change dominates the intraseasonal variability of SPV. Further analysis suggests that it couples well with the tropospheric circulation, forming an intraseasonal stratosphere–troposphere oscillation (STO). The STO shows periodic westward propagation throughout its life cycle and has a deep structure extending from the troposphere to the stratosphere. It reflects the movement of the SPV toward North America, then the North Pacific, Eurasia, and the North Atlantic, and causes significant changes in surface air temperature over North America and East Asia. The mechanism of the STO involves Rossby wave propagation between the troposphere and stratosphere and cross-scale interactions in the troposphere. Upward Rossby wave propagation from the troposphere over East Asia maintains the STO’s stratospheric component, and the reflection of these waves back to the troposphere contributes substantially to the STO’s tropospheric center over North America. Meanwhile, the linear and nonlinear processes explain the STO’s westward propagation in the troposphere, which facilities vertical wave propagation changes. The STO unifies the SPV shifts, the retrograding tropospheric disturbances, and the wave coupling processes into one framework and provides a holistic view for a better understanding of the intraseasonal stratosphere–troposphere coupling. Given its oscillating nature, time scale, and widespread surface response, the STO may be a potential source of predictability for the subseasonal-to-seasonal prediction.

Significance Statement

Stratospheric circulation plays a vital role in influencing tropospheric weather and climate, but its variability and coupling with the troposphere have not been fully understood for the intraseasonal time scale. This study finds that the Northern Annular Mode is the leading mode of variability in the extratropical Northern Hemisphere stratosphere on time scales longer than 60 days, which reflects the changes in the intensity of the stratospheric polar vortex. In contrast, the shift of the stratospheric polar vortex excels as the leading mode on time scales shorter than 60 days and is identified as a stratosphere–troposphere oscillation (STO) phenomenon. In the stratosphere, the STO is characterized by the shift of the polar vortex and rotates clockwise with time. In the troposphere, the STO is manifested as a large-scale westward-propagating circulation in the midlatitudes, with significant near-surface temperature anomalies across the continents. The formation of the STO is further attributed to the vertical and horizontal Rossby wave propagation. As STO is a periodic oscillation, it may serve as a potential predictability source for subseasonal-to-seasonal climate prediction.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lin Wang, wanglin@mail.iap.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 427 KB)
Save
  • Ambaum, M. H. P., and B. J. Hoskins, 2002: The NAO troposphere–stratosphere connection. J. Climate, 15, 19691978, https://doi.org/10.1175/1520-0442(2002)015<1969:TNTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., D. B. Stephenson, D. W. J. Thompson, T. J. Dunkerton, A. J. Charlton, and A. O’Neill, 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636640, https://doi.org/10.1126/science.1087143.

    • Search Google Scholar
    • Export Citation
  • Bao, M., and J. M. Wallace, 2015: Cluster analysis of Northern Hemisphere wintertime 500-hPa flow regimes during 1920–2014. J. Atmos. Sci., 72, 35973608, https://doi.org/10.1175/JAS-D-15-0001.1.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 1987: A striking example of the atmospheres leading traveling pattern. J. Atmos. Sci., 44, 23102323, https://doi.org/10.1175/1520-0469(1987)044<2310:ASEOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406, https://doi.org/10.1175/2010BAMS3013.1.

    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. Vandendool, 1994: Dynamical decomposition of low-frequency tendencies. J. Atmos. Sci., 51, 20862100, https://doi.org/10.1175/1520-0469(1994)051<2086:DDOLFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and D. Barriopedro, 2010: Dynamical connection between tropospheric blockings and stratospheric polar vortex. Geophys. Res. Lett., 37, L13809, https://doi.org/10.1029/2010GL043819.

    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from lower into upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Chen, P., and W. A. Robinson, 1992: Propagation of planetary-waves between the troposphere and stratosphere. J. Atmos. Sci., 49, 25332545, https://doi.org/10.1175/1520-0469(1992)049<2533:POPWBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, W., H. F. Graf, and M. Takahashi, 2002: Observed interannual oscillations of planetary wave forcing in the Northern Hemisphere winter. Geophys. Res. Lett., 29, 2073, https://doi.org/10.1029/2002GL016062.

    • Search Google Scholar
    • Export Citation
  • Chen, W., M. Takahashi, and H. F. Graf, 2003: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST. J. Geophys. Res., 108, 4797, https://doi.org/10.1029/2003JD003834.

    • Search Google Scholar
    • Export Citation
  • Chen, W., K. Wei, L. Wang, and Q. Zhou, 2013: Climate variability and mechanisms of the East Asian winter monsoon and the impact from the stratosphere (in Chinese). Chin. J. Atmos. Sci., 37, 425438.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., L. Agel, M. Barlow, C. I. Garfinkel, and I. White, 2021: Linking Arctic variability and change with extreme winter weather in the United States. Science, 373, 11161121, https://doi.org/10.1126/science.abi9167.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., L. Agel, M. Barlow, J. C. Furtado, M. Kretschmer, and V. Wendt, 2022: The “polar vortex” winter of 2013/2014. J. Geophys. Res. Atmos., 127, e2022JD036493, https://doi.org/10.1029/2022JD036493.

    • Search Google Scholar
    • Export Citation
  • Davis, N. A., J. H. Richter, A. A. Glanville, J. Edwards, and E. LaJoie, 2022: Limited surface impacts of the January 2021 sudden stratospheric warming. Nat. Commun., 13, 1136, https://doi.org/10.1038/s41467-022-28836-1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ding, X., G. Chen, L. Sun, and P. Zhang, 2022: Distinct North American cooling signatures following the zonally symmetric and asymmetric modes of winter stratospheric variability. Geophys. Res. Lett., 49, e2021GL096076, https://doi.org/10.1029/2021GL096076.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020a: The role of the stratosphere in subseasonal to seasonal prediction: 1. Predictability of the stratosphere. J. Geophys. Res. Atmos., 125, e2019JD030920, https://doi.org/10.1029/2019JD030920.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and Coauthors, 2020b: The role of the stratosphere in subseasonal to seasonal prediction: 2. Predictability arising from stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 125, e2019JD030923, https://doi.org/10.1029/2019JD030923.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 13741390, https://doi.org/10.1002/2014JD022116.

    • Search Google Scholar
    • Export Citation
  • Dunn-Sigouin, E., and T. A. Shaw, 2018: Dynamics of extreme stratospheric negative heat flux events in an idealized model. J. Atmos. Sci., 75, 35213540, https://doi.org/10.1175/JAS-D-17-0263.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1994: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796, https://doi.org/10.1256/0035900021643683.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129, 901924, https://doi.org/10.1256/qj.02.76.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. L. Hartmann, and F. Sassi, 2010: Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Climate, 23, 32823299, https://doi.org/10.1175/2010JCLI3010.1.

    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859, https://doi.org/10.1175/BAMS-D-11-00145.1.

    • Search Google Scholar
    • Export Citation
  • Guan, W., X. Jiang, X. Ren, G. Chen, P. Lin, and H. Lin, 2020: The leading intraseasonal variability mode of wintertime surface air temperature over the North American sector. J. Climate, 33, 92879306, https://doi.org/10.1175/JCLI-D-20-0096.1.

    • Search Google Scholar
    • Export Citation
  • Harnik, N., and R. S. Lindzen, 2001: The effect of reflecting surfaces on the vertical structure and variability of stratospheric planetary waves. J. Atmos. Sci., 58, 28722894, https://doi.org/10.1175/1520-0469(2001)058<2872:TEORSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. Elsevier Academic Press, 535 pp.

  • Hu, D., and Z. Guan, 2018: Decadal relationship between the stratospheric Arctic vortex and Pacific decadal oscillation. J. Climate, 31, 33713386, https://doi.org/10.1175/JCLI-D-17-0266.1.

    • Search Google Scholar
    • Export Citation
  • Hu, D., Z. Guan, W. Tian, and R. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nat. Commun., 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.

    • Search Google Scholar
    • Export Citation
  • Hu, Y. Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and Northern Hemisphere annular mode. J. Climate, 15, 16591673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, J. L., W. S. Tian, L. J. Gray, J. K. Zhang, Y. Li, J. L. Luo, and H. Y. Tian, 2018: Preconditioning of Arctic stratospheric polar vortex shift events. J. Climate, 31, 54175436, https://doi.org/10.1175/JCLI-D-17-0695.1.

    • Search Google Scholar
    • Export Citation
  • Itoh, H., and K. Harada, 2004: Coupling between tropospheric and stratospheric leading modes. J. Climate, 17, 320336, https://doi.org/10.1175/1520-0442(2004)017<0320:CBTASL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 12631266, https://doi.org/10.1029/GL017i009p01263.

    • Search Google Scholar
    • Export Citation
  • Kodera, K., H. Mukougawa, and S. Itoh, 2008: Tropospheric impact of reflected planetary waves from the stratosphere. Geophys. Res. Lett., 35, L16806, https://doi.org/10.1029/2008GL034575.

    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Search Google Scholar
    • Export Citation
  • Kretschmer, M., J. Cohen, V. Matthias, J. Runge, and D. Coumou, 2018: The different stratospheric influence on cold-extremes in Eurasia and North America. npj Climate Atmos. Sci., 1, 44, https://doi.org/10.1038/s41612-018-0054-4.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1987: Retrograding wintertime low-frequency disturbances over the North Pacific Ocean. J. Atmos. Sci., 44, 27272742, https://doi.org/10.1175/1520-0469(1987)044<2727:RWLFDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, S. H., J. C. Furtado, and A. J. Charlton-Perez, 2019: Wintertime North American weather regimes and the Arctic stratospheric polar vortex. Geophys. Res. Lett., 46, 14 89214 900, https://doi.org/10.1029/2019GL085592.

    • Search Google Scholar
    • Export Citation
  • Lu, Y. J., W. S. Tian, J. K. Zhang, J. L. Huang, R. H. Zhang, T. Wang, and M. Xu, 2021: The impact of the stratospheric polar vortex shift on the Arctic oscillation. J. Climate, 34, 41294143, https://doi.org/10.1175/JCLI-D-20-0536.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1971: Dynamical model of stratospheric sudden warming. J. Atmos. Sci., 28, 14791494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matthias, V., and M. Kretschmer, 2020: The influence of stratospheric wave reflection on North American cold spell. Mon. Wea. Rev., 148, 16751690, https://doi.org/10.1175/MWR-D-19-0339.1.

    • Search Google Scholar
    • Export Citation
  • Messori, G., M. Kretschmer, S. H. Lee, and V. Wendt, 2022: Stratospheric downward wave reflection events modulate North American weather regimes and cold spells. Wea. Climate Dyn., 3, 12151236, https://doi.org/10.5194/wcd-3-1215-2022.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., K. Nishii, L. Wang, Y. J. Orsolini, and K. Takaya, 2016: Cold-air outbreaks over East Asia associated with blocking highs: Mechanisms and their interaction with the polar stratosphere. Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, 225–235.

  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, https://doi.org/10.1175/JCLI-D-10-05021.1.

    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SubX): A multimodel subseasonal prediction experiment. Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 49024909, https://doi.org/10.1175/JCLI-3247.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1989: On the seasonal cycle of stratospheric planetary-waves. Pure Appl. Geophys., 130, 233242, https://doi.org/10.1007/BF00874457.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 2010: Planetary waves and the extratropical winter stratosphere. The Stratosphere: Dynamics, Transport, and Chemistry, Geophys. Monogr., Vol. 190, Amer. Geophys. Union, 23–41.

  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and I. N. James, 2000: Response of the stratosphere to interannual variability of tropospheric planetary waves. Quart. J. Roy. Meteor. Soc., 126, 275297, https://doi.org/10.1002/qj.49712656214.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 5156, https://doi.org/10.1002/asl.598.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2022: Long-range prediction and the stratosphere. Atmos. Chem. Phys., 22, 26012623, https://doi.org/10.5194/acp-22-2601-2022.

    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, https://doi.org/10.1002/grl.50927.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and J. Perlwitz, 2013: The life cycle of Northern Hemisphere downward wave coupling between the stratosphere and troposphere. J. Climate, 26, 17451763, https://doi.org/10.1175/JCLI-D-12-00251.1.

    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Perlwitz, and O. Weiner, 2014: Troposphere-stratosphere coupling: Links to North Atlantic weather and climate, including their representation in CMIP5 models. J. Geophys. Res. Atmos., 119, 58645880, https://doi.org/10.1002/2013JD021191.

    • Search Google Scholar
    • Export Citation
  • Song, L., and R. Wu, 2019: Precursory signals of East Asian winter cold anomalies in stratospheric planetary wave pattern. Climate Dyn., 52, 59655983, https://doi.org/10.1007/s00382-018-4491-x.

    • Search Google Scholar
    • Export Citation
  • Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the East Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 25572577, https://doi.org/10.1175/JCLI-D-14-00834.1.

    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tan, X., and M. Bao, 2020: Linkage between a dominant mode in the lower stratosphere and the Western Hemisphere circulation pattern. Geophys. Res. Lett., 47, e2020GL090105, https://doi.org/10.1029/2020GL090105.

    • Search Google Scholar
    • Export Citation
  • Tan, X., M. Bao, D. L. Hartmann, and P. Ceppi, 2017: The role of synoptic waves in the formation and maintenance of the Western Hemisphere circulation pattern. J. Climate, 30, 10 25910 274, https://doi.org/10.1175/JCLI-D-17-0158.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 8589, https://doi.org/10.1126/science.1058958.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, https://doi.org/10.1126/science.343.6172.729.

    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and L. M. Polvani, 2010: Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry, L. M. Polvani, A. H. Sobel, and D. W. Waugh, Eds., Amer. Geophys. Union, 43–57.

  • Waugh, D. W., A. H. Sobel, and L. M. Polvani, 2017: What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc., 98, 3744, https://doi.org/10.1175/BAMS-D-15-00212.1.

    • Search Google Scholar
    • Export Citation
  • White, I. P., C. I. Garfinkel, J. Cohen, M. Jucker, and J. Rao, 2021: The impact of split and displacement sudden stratospheric warmings on the troposphere. J. Geophys. Res. Atmos., 126, e2020JD033989, https://doi.org/10.1029/2020JD033989.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, https://doi.org/10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
  • Xu, P., L. Wang, W. Chen, G. Chen, and I.-S. Kang, 2020: Intraseasonal Variations of the British-Baikal Corridor Pattern. J. Climate, 33, 21832200, https://doi.org/10.1175/JCLI-D-19-0458.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C. Y., J. K. Zhang, M. Xu, S. Y. Zhao, and X. F. Xia, 2022: Impacts of stratospheric polar vortex shift on the East Asian trough. J. Climate, 35, 56055621, https://doi.org/10.1175/JCLI-D-21-0235.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. K., W. S. Tian, M. P. Chipperfield, F. Xie, and J. L. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 614 614 17
Full Text Views 359 359 15
PDF Downloads 432 432 17