Understanding and Reducing Warm and Dry Summer Biases in the Central United States: Improving Cumulus Parameterization

Chao Sun aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
bEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Chao Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3862-9798
and
Xin-Zhong Liang aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
bEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin-Zhong Liang, xliang@umd.edu

Abstract

Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin-Zhong Liang, xliang@umd.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.97 MB)
Save
  • Abatzoglou, J. T., 2013: Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33, 121131, https://doi.org/10.1002/joc.3413.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Augustine, J. A., and F. Caracena, 1994: Lower-tropospheric precursors to nocturnal MCS development over the central United States. Wea. Forecasting, 9, 116135, https://doi.org/10.1175/1520-0434(1994)009<0116:LTPTNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas‐Reyes, M. Leutbecher, M. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Search Google Scholar
    • Export Citation
  • Chasteen, M. B., S. E. Koch, and D. B. Parsons, 2019: Multiscale processes enabling the longevity and daytime persistence of a nocturnal mesoscale convective system. Mon. Wea. Rev., 147, 733761, https://doi.org/10.1175/MWR-D-18-0233.1.

    • Search Google Scholar
    • Export Citation
  • Cheruy, F., J. L. Dufresne, F. Hourdin, and A. Ducharne, 2014: Role of clouds and land‐atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys. Res. Lett., 41, 64936500, https://doi.org/10.1002/2014GL061145.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., and X.-Z. Liang, 2010: Improved terrestrial hydrologic representation in mesoscale land surface models. J. Hydrometeor., 11, 797809, https://doi.org/10.1175/2010JHM1221.1.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., P. Kumar, and X.-Z. Liang, 2007: Three‐dimensional volume‐averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res., 43, W04414, https://doi.org/10.1029/2006WR005134.

    • Search Google Scholar
    • Export Citation
  • Choi, H. I., X.-Z. Liang, and P. Kumar, 2013: A conjunctive surface–subsurface flow representation for mesoscale land surface models. J. Hydrometeor., 14, 14211442, https://doi.org/10.1175/JHM-D-12-0168.1.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., and Coauthors, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 10131024, https://doi.org/10.1175/BAMS-84-8-1013.

  • Dai, Y., R. E. Dickinson, and Y.-P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 22812299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906, https://doi.org/10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and M. Živković-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 17661782, https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, S., R. Marchand, T. Ackerman, L. Donner, J.-C. Golaz, and C. Seman, 2017: Diagnosing cloud biases in the GFDL AM3 model with atmospheric classification. J. Geophys. Res. Atmos., 122, 12 82712 844, https://doi.org/10.1002/2017JD027163.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson, and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., F. Song, K. Sakaguchi, and L. R. Leung, 2021: Evaluation of mesoscale convective systems in climate simulations: Methodological development and results from MPAS-CAM over the United States. J. Climate, 34, 26112633, https://doi.org/10.1175/JCLI-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rainclouds. Cambridge University Press, 389 pp.

  • Fowler, L. D., and D. A. Randall, 1994: A global radiative‐convective feedback. Geophys. Res. Lett., 21, 20352038, https://doi.org/10.1029/94GL01711.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and J. M. Brown, 1982: On the generation of convectively driven mesohighs aloft. Mon. Wea. Rev., 110, 15541563, https://doi.org/10.1175/1520-0493(1982)110<1554:OTGOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gan, Y., X.-Z. Liang, Q. Duan, H. I. Choi, Y. Dai, and H. Wu, 2015: Stepwise sensitivity analysis from qualitative to quantitative: Application to the terrestrial hydrological modeling of a Conjunctive Surface‐Subsurface Process (CSSP) land surface model. J. Adv. Model. Earth Syst., 7, 648669, https://doi.org/10.1002/2014MS000406.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of US summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Goswami, T., P. Mukhopadhyay, M. Ganai, R. P. M. Krishna, M. Mahakur, and J.-Y. Han, 2020: How changing cloud water to rain conversion profile impacts on radiation and its linkage to a better Indian summer monsoon rainfall simulation. Theor. Appl. Climatol., 141, 947958, https://doi.org/10.1007/s00704-020-03222-3.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dvénéyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 121 pp., https://doi.org/10.5065/D60Z716B.

  • Guo, Z., and Coauthors, 2006: GLACE: The Global Land–Atmosphere Coupling Experiment. Part II: Analysis. J. Hydrometeor., 7, 611625, https://doi.org/10.1175/JHM511.1.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, https://doi.org/10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., S.-Y. Hong, K.-S. S. Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 21252135, https://doi.org/10.1175/MWR-D-15-0255.1.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., J. R. Holton, and Q. Fu, 2001: The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration. Geophys. Res. Lett., 28, 19691972, https://doi.org/10.1029/2000GL012833.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J. Atmos. Sci., 64, 14671487, https://doi.org/10.1175/JAS3907.1.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and H.-L. Pan, 1998: Convective trigger function for a mass-flux cumulus parameterization scheme. Mon. Wea. Rev., 126, 25992620, https://doi.org/10.1175/1520-0493(1998)126<2599:CTFFAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2020: Observed warm‐season characteristics of MCS and non‐MCS rainfall and their recent changes in the central United States. Geophys. Res. Lett., 47, e2019GL086783, https://doi.org/10.1029/2019GL086783.

    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2021: Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA, 118, e2105260118, https://doi.org/10.1073/pnas.2105260118.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: Influence on triggering, updraft properties, and model climate. Mon. Wea. Rev., 131, 27652778, https://doi.org/10.1175/1520-0493(2003)131<2765:ANSMFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ji, P., X. Yuan, and X.-Z. Liang, 2017: Do lateral flows matter for the hyperresolution land surface modeling? J. Geophys. Res. Atmos., 122, 12 07712 092, https://doi.org/10.1002/2017JD027366.

    • Search Google Scholar
    • Export Citation
  • Jiang, R., L. Sun, C. Sun, and X.-Z. Liang, 2021: CWRF downscaling and understanding of China precipitation projections. Climate Dyn., 57, 10791096, https://doi.org/10.1007/s00382-021-05759-z.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294299, https://doi.org/10.1175/1520-0434(1993)008<0294:MCAWBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Joos, H., P. Spichtinger, U. Lohmann, J.-F. Gayet, and A. Minikin, 2008: Orographic cirrus in the global climate model ECHAM5. J. Geophys. Res., 113, D18205, https://doi.org/10.1029/2007JD009605.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the US Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., G. Tselioudis, and B. A. Albrecht, 2007: Cloud climatology at the Southern Great Plains and the layer structure, drizzle, and atmospheric modes of continental stratus. J. Geophys. Res., 112, D09116, https://doi.org/10.1029/2006JD007307.

    • Search Google Scholar
    • Export Citation
  • Li, Q., T. Wang, F. Wang, X.-Z. Liang, C. Zhao, L. Dong, C. Zhao, and B. Xie, 2021: Dynamical downscaling simulation of the East Asian summer monsoon in a regional Climate‐Weather Research and Forecasting Model. Int. J. Climatol., 41, E1700E1716, https://doi.org/10.1002/joc.6800.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2004a: Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: Annual cycle. J. Climate, 17, 35103529, https://doi.org/10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004b: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, https://doi.org/10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2005a: Development of land surface albedo parameterization based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res., 110, D11107, https://doi.org/10.1029/2004JD005579.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., H. I. Choi, K. E. Kunkel, Y. Dai, E. Joseph, J. X. L. Wang, and P. Kumar, 2005b: Surface boundary conditions for mesoscale regional climate models. Earth Interact., 9, https://doi.org/10.1175/EI151.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional Climate–Weather Research and Forecasting Model. Bull. Amer. Meteor. Soc., 93, 13631387, https://doi.org/10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2019: CWRF performance at downscaling China climate characteristics. Climate Dyn., 52, 21592184, https://doi.org/10.1007/s00382-018-4257-5.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and Coauthors, 2014: Investigation of aerosol indirect effects using a cumulus microphysics parameterization in a regional climate model. J. Geophys. Res. Atmos., 119, 906926, https://doi.org/10.1002/2013JD020958.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Proc. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/Annual2005/techprogram/paper_83847.htm.

  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central US and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Search Google Scholar
    • Export Citation
  • Linnet, K., 2000: Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin. Chem., 46, 867869, https://doi.org/10.1093/clinchem/46.6.867.

    • Search Google Scholar
    • Export Citation
  • Lord, S. J., 1982: Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semi-prognostic test of the Arakawa-Schubert cumulus parameterization. J. Atmos. Sci., 39, 88103, https://doi.org/10.1175/1520-0469(1982)039<0088:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the central United States. J. Geophys. Res. Atmos., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., P. Knippertz, N. S. Dixon, D. J. Parker, and G. M. S. Lister, 2011: The importance of the representation of deep convection for modeled dust‐generating winds over West Africa during summer. Geophys. Res. Lett., 38, L16803, https://doi.org/10.1029/2011GL048368.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near‐surface temperature errors in 5 day hindcasts near the Southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, https://doi.org/10.1002/2013GL058055.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, https://doi.org/10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., R. D. Clark, and T. D. Sikora, 2020: Nocturnal destabilization associated with the summertime Great Plains low-level jet. Mon. Wea. Rev., 148, 46414656, https://doi.org/10.1175/MWR-D-19-0394.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2015: MODIS cloud optical properties: User guide for the Collection 6 level-2 MOD06/MYD06 product and associated level-3 datasets, version 1.0. NASA GSFC Doc., 145 pp., https://modis-images.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf.

  • Pokharel, B., S.-Y. S. Wang, J. Meyer, R. Gillies, and Y.-H. Lin, 2019: Climate of the weakly-forced yet high-impact convective storms throughout the Ohio River valley and mid-Atlantic United States. Climate Dyn., 52, 57095721, https://doi.org/10.1007/s00382-018-4472-0.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2015: Effects of cumulus parameterizations on predictions of summer flood in the central United States. Climate Dyn., 45, 727744, https://doi.org/10.1007/s00382-014-2301-7.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2016: Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J. Adv. Model. Earth Syst., 8, 764785, https://doi.org/10.1002/2015MS000621.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2017: Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Climate Dyn., 49, 225247, https://doi.org/10.1007/s00382-016-3338-6.

    • Search Google Scholar
    • Export Citation
  • Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. R. Homeyer, 2019: Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 67496767, https://doi.org/10.1175/JCLI-D-18-0839.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and J. M. Fritsch, 1994: Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition. Mon. Wea. Rev., 122, 20682083, https://doi.org/10.1175/1520-0493(1994)122<2068:MCSIWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2020a: Improving US extreme precipitation simulation: Sensitivity to physics parameterizations. Climate Dyn., 54, 48914918, https://doi.org/10.1007/s00382-020-05267-6.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2020b: Improving US extreme precipitation simulation: Dependence on cumulus parameterization and underlying mechanism. Climate Dyn., 55, 13251352, https://doi.org/10.1007/s00382-020-05328-w.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2023: Understanding and reducing warm and dry summer biases in the central United States: Analytical modeling to identify the mechanisms for CMIP ensemble error spread. J. Climate, 36, 20352054, https://doi.org/10.1175/JCLI-D-22-0255.1.

    • Search Google Scholar
    • Export Citation
  • Swales, D. J., R. Pincus, and A. Bodas-Salcedo, 2018: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2. Geosci. Model Dev., 11, 7781, https://doi.org/10.5194/gmd-11-77-2018.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. ECMWF Workshop on Convection in Large-Scale Models, Reading, United Kingdom, ECMWF, 297–316, https://www.ecmwf.int/node/12733.

  • Tokioka, T., K. Yamazaki, A. Kitoh, and T. Ose, 1988: The equatorial 30-60 day oscillation and the Arakawa-Schubert penetrative cumulus parameterization. J. Meteor. Soc. Japan, 66, 883901, https://doi.org/10.2151/jmsj1965.66.6_883.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, https://doi.org/10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., W. B. Rossow, C. Jakob, J. Remillard, D. Tropf, and Y. Zhang, 2021: Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data. J. Climate, 34, 73117324, https://doi.org/10.1175/JCLI-D-21-0076.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the US Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., and A. J. Clark, 2010: NAM model forecasts of warm-season quasi-stationary frontal environments in the central United States. Wea. Forecasting, 25, 12811292, https://doi.org/10.1175/2010WAF2222394.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and S. E. Taylor, 2009: Evaluations of NAM forecasts on midtropospheric perturbation-induced convective storms over the U.S. northern plains. Wea. Forecasting, 24, 13091333, https://doi.org/10.1175/2009WAF2222185.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and J. Correia, 2011: Climatology of summer midtropospheric perturbations in the US northern plains. Part I: Influence on northwest flow severe weather outbreaks. Climate Dyn., 36, 793810, https://doi.org/10.1007/s00382-009-0696-3.

    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1998: Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Climate, 11, 137164, https://doi.org/10.1175/1520-0442(1998)011<0137:GMPEFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, M., X.-Z. Liang, A. Samel, and W. Gao, 2014: MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J. Climate, 27, 85788596, https://doi.org/10.1175/JCLI-D-14-00082.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., G. L. Roff, W. W. Grabowski, and B. E. Mapes, 2000: Asymptotic approaches to convective quasi‐equilibrium. Quart. J. Roy. Meteor. Soc., 126, 18611887, https://doi.org/10.1002/qj.49712656615.

    • Search Google Scholar
    • Export Citation
  • Yuan, X., and X.-Z. Liang, 2011: Evaluation of a Conjunctive Surface–Subsurface Process model (CSSP) over the contiguous United States at regional–local scales. J. Hydrometeor., 12, 579599, https://doi.org/10.1175/2010JHM1302.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and Y. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 59235941, https://doi.org/10.1175/JCLI-D-16-0597.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-y. Ma, S. Tang, K. Van Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, https://doi.org/10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X.-Z. Liang, 2013: Impacts of the Bermuda high on regional climate and ozone over the United States. J. Climate, 26, 10181032, https://doi.org/10.1175/JCLI-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 762 762 17
Full Text Views 289 289 4
PDF Downloads 341 341 3