Understanding and Reducing Warm and Dry Summer Biases in the Central United States: Analytical Modeling to Identify the Mechanisms for CMIP Ensemble Error Spread

Chao Sun aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
bEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Chao Sun in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3862-9798
and
Xin-Zhong Liang aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
bEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Xin-Zhong Liang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pronounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of temperature and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud amounts, which amplify the positive feedback to cause significant biases.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao Sun, xliang@umd.edu

Abstract

Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pronounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of temperature and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud amounts, which amplify the positive feedback to cause significant biases.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chao Sun, xliang@umd.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.43 MB)
Save
  • Andrews, T., P. M. Forster, and J. M. Gregory, 2009: A surface energy perspective on climate change. J. Climate, 22, 25572570, https://doi.org/10.1175/2008JCLI2759.1.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ardilouze, C., L. Batté, B. Decharme, and M. Déqué, 2019: On the link between summer dry bias over the U.S. Great Plains and seasonal temperature prediction skill in a dynamical forecast system. Wea. Forecasting, 34, 11611172, https://doi.org/10.1175/WAF-D-19-0023.1.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., F. Chen, R. Rasmussen, Z. Zhang, and G. Miguez-Macho, 2021: The importance of scale-dependent groundwater processes in land–atmosphere interactions over the central United States. Geophys. Res. Lett., 48, e2020GL092171, https://doi.org/10.1029/2020GL092171.

    • Search Google Scholar
    • Export Citation
  • Bellprat, O., S. Kotlarski, D. Lüthi, R. De Elía, A. Frigon, R. Laprise, and C. Schär, 2016: Objective calibration of regional climate models: Application over Europe and North America. J. Climate, 29, 819838, https://doi.org/10.1175/JCLI-D-15-0302.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2000: Idealized model for equilibrium boundary layer over land. J. Hydrometeor., 1, 507523, https://doi.org/10.1175/1525-7541(2000)001<0507:IMFEBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land–surface processes. J. Geophys. Res., 112, D10108, https://doi.org/10.1029/2006JD008191.

    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., and B. A. Albrecht, 2000: Atmospheric thermodynamics. Amer. J. Phys., 68, 1159, https://doi.org/10.1119/1.1313524.

  • Brubaker, K. L., and D. Entekhabi, 1995: An analytic approach to modeling land–atmosphere interaction: 1. Construct and equilibrium behavior. Water Resour. Res., 31, 619632, https://doi.org/10.1029/94WR01772.

    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., and D. Entekhabi, 1996: Analysis of feedback mechanisms in land–atmosphere interaction. Water Resour. Res., 32, 13431357, https://doi.org/10.1029/96WR00005.

    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1974: Climate and Life. Vol. 18. Academic Press, 508 pp.

  • Chang, Y., S. D. Schubert, R. D. Koster, A. M. Molod, and H. Wang, 2019: Tendency bias correction in coupled and uncoupled global climate models with a focus on impacts over North America. J. Climate, 32, 639661, https://doi.org/10.1175/JCLI-D-18-0598.1.

    • Search Google Scholar
    • Export Citation
  • Cheruy, F., J. L. Dufresne, F. Hourdin, and A. Ducharne, 2014: Role of clouds and land–atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys. Res. Lett., 41, 64936500, https://doi.org/10.1002/2014GL061145.

    • Search Google Scholar
    • Export Citation
  • Cheruy, F., and Coauthors, 2020: Improved near-surface continental climate in IPSL–CM6A–LR by combined evolutions of atmospheric and land surface physics. J. Adv. Model. Earth Syst. ,12, e2019MS002005, https://doi.org/10.1029/2019MS002005.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., Jr., and P. Yang, 2014: Atmospheric Radiation: A Primer with Illustrative Solutions. John Wiley & Sons, 256 pp.

  • DelGenio, A. D., and M. S. Yao, 1993: Efficient cumulus parameterization for long-term climate studies: The GISS scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 181–184.

  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., P. Kumar, X.-Z. Liang, and M. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 15131530, https://doi.org/10.1175/JCLI3691.1.

    • Search Google Scholar
    • Export Citation
  • Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert, 2012: HESS opinions “Should we apply bias correction to global and regional climate model data?” Hydrol. Earth Syst. Sci., 16, 33913404, https://doi.org/10.5194/hess-16-3391-2012.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2019: Taking climate model evaluation to the next level. Nat. Climate Change, 9, 102110, https://doi.org/10.1038/s41558-018-0355-y.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. R., and E. F. Wood, 2011: Observed land–atmosphere coupling from satellite remote sensing and reanalysis. J. Hydrometeor., 12, 12211254, https://doi.org/10.1175/2011JHM1380.1.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003a: Atmospheric controls on soil moisture–boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003b: Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeor., 4, 570583, https://doi.org/10.1175/1525-7541(2003)004<0570:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Geleyn, J.-F., B. Catry, Y. Bouteloup, and R. Brozkova, 2008: A statistical approach for sedimentation inside a microphysical precipitation scheme. Tellus, 60, 649662, https://doi.org/10.1111/j.1600-0870.2007.00323.x.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., G.-J. Steeneveld, B. G. Heusinkveld, and A. A. M. Holtslag, 2018: Coupling between radiative flux divergence and turbulence near the surface. Quart. J. Roy. Meteor. Soc., 144, 24912507, https://doi.org/10.1002/qj.3333.

    • Search Google Scholar
    • Export Citation
  • Gerrits, A. M. J., H. H. G. Savenije, E. J. M. Veling, and L. Pfister, 2009: Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model. Water Resour. Res., 45, W04403, https://doi.org/10.1029/2008WR007308.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2016: Major mechanisms of atmospheric moisture transport and their role in extreme precipitation events. Annu. Rev. Environ. Resour., 41, 117141, https://doi.org/10.1146/annurev-environ-110615-085558.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118%3c1483:AMFCSW%3e2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guérémy, J. F., 2011: A continuous buoyancy based convection scheme: One- and three-dimensional validation. Tellus, 63A, 687706, https://doi.org/10.1111/j.1600-0870.2011.00521.x.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Global Physical Climatology. 2nd ed. Elsevier, 481 pp.

  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2020: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics. J. Adv. Model. Earth Syst., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892.

    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2021: Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA, 118, e2105260118, https://doi.org/10.1073/pnas.2105260118.

    • Search Google Scholar
    • Export Citation
  • Jiang, R., L. Sun, C. Sun, and X.-Z. Liang, 2021: CWRF downscaling and understanding of China precipitation projections. Climate Dyn., 57, 10791096, https://doi.org/10.1007/s00382-021-05759-z.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2019: The FLUXCOM ensemble of global land–atmosphere energy fluxes. Sci. Data, 6, 74, https://doi.org/10.1038/s41597-019-0076-8.

    • Search Google Scholar
    • Export Citation
  • Kim, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M. S. Yao, M. Kelley, and L. Nazarenko, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 46414659, https://doi.org/10.1175/JCLI-D-11-00447.1.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., X. Jiang, J. Boyle, S. Malyshev, and S. Xie, 2006: Diagnosis of the summertime warm and dry bias over the US southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, https://doi.org/10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Kotz, M., A. Levermann, and L. Wenz, 2022: The effect of rainfall changes on economic production. Nature, 601, 223227, https://doi.org/10.1038/s41586-021-04283-8.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., X.-Z. Liang, and J. Zhu, 2010: Regional climate model projections and uncertainties of U.S. summer heat waves. J. Climate, 23, 44474458, https://doi.org/10.1175/2010JCLI3349.1.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., and G. J. McCabe Jr., 1999: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35, 233241, https://doi.org/10.1029/1998WR900018.

    • Search Google Scholar
    • Export Citation
  • Li, S., and Coauthors, 2019: Reducing climate model biases by exploring parameter space with large ensembles of climate model simulations and statistical emulation. Geosci. Model Dev., 12, 30173043, https://doi.org/10.5194/gmd-12-3017-2019.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, https://doi.org/10.1175/2010JCLI3829.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., K. Guan, G. D. Schnitkey, E. DeLucia, and B. Peng, 2019: Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biol., 25, 23252337, https://doi.org/10.1111/gcb.14628.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., 2022: Extreme rainfall slows the global economy. Nature, 601, 193194, https://doi.org/10.1038/d41586-021-03783-x.

  • Liang, X.-Z., L. Li, A. Dai, and K. E. Kunkel, 2004: Regional climate model simulation of summer precipitation diurnal cycle over the United States. Geophys. Res. Lett., 31, L24208, https://doi.org/10.1029/2004GL021054.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., M. Xu, K. E. Kunkel, G. A. Grell, and J. S. Kain, 2007: Regional climate model simulation of U.S.–Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20, 52015207, https://doi.org/10.1175/JCLI4306.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., K. E. Kunkel, G. A. Meehl, R. G. Jones, and J. X. L. Wang, 2008: Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys. Res. Lett., 35, L08709, https://doi.org/10.1029/2007GL032849.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2012: Regional climate–weather research and forecasting model. Bull. Amer. Meteor. Soc., 93, 13631387, https://doi.org/10.1175/BAMS-D-11-00180.1.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and Coauthors, 2017: Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA, 114, E2285E2292, https://doi.org/10.1073/pnas.1615922114.

    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., Q. Li, H. Mei, and M. Zeng, 2019: Multi‐grid nesting ability to represent convections across the gray zone. J. Adv. Model. Earth Syst., 11, 43524376, https://doi.org/10.1029/2019MS001741.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, Y. Ming, J. C. Golaz, L. J. Donner, S. A. Klein, V. Ramaswamy, and S. Xie, 2013: Precipitation partitioning, tropical clouds, and intraseasonal variability in GFDL AM2. J. Climate, 26, 54535466, https://doi.org/10.1175/JCLI-D-12-00442.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.

    • Search Google Scholar
    • Export Citation
  • Linnet, K., 2000: Nonparametric estimation of reference intervals by simple and bootstrap-based procedures. Clin. Chem., 46, 867869, https://doi.org/10.1093/clinchem/46.6.867.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and Coauthors, 2017: Continental-scale convection-permitting modeling of the current and future climate of North America. Climate Dyn., 49, 7195, https://doi.org/10.1007/s00382-016-3327-9.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2002: Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes. Quart. J. Roy. Meteor. Soc., 128, 229257, https://doi.org/10.1256/00359000260498879.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2018: CAUSES: On the role of surface energy budget errors to the warm surface air temperature error over the central United States. J. Geophys. Res. Atmos., 123, 28882909, https://doi.org/10.1002/2017JD027194.

    • Search Google Scholar
    • Export Citation
  • McGuffie, K., and A. Henderson-Sellers, 2014: The Climate Modelling Primer. 4th ed. John Wiley and Sons, 456 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Morcrette, C. J., and Coauthors, 2018: Introduction to CAUSES: Description of weather and climate models and their near‐surface temperature errors in 5 day hindcasts near the southern Great Plains. J. Geophys. Res. Atmos., 123, 26552683, https://doi.org/10.1002/2017JD027199.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128134, https://doi.org/10.1002/2013GL058055.

    • Search Google Scholar
    • Export Citation
  • Mueller, N. D., E. E. Butler, K. A. McKinnon, A. Rhines, M. Tingley, N. M. Holbrook, and P. Huybers, 2016: Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Climate Change, 6, 317322, https://doi.org/10.1038/nclimate2825.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and P. A. O’Gorman, 2011: An energetic perspective on the regional response of precipitation to climate change. Nat. Climate Change, 1, 266271, https://doi.org/10.1038/nclimate1169.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and F. B. Smith, 1982: On the definition of the flux of sensible heat. Bound.-Layer Meteor., 24, 121127, https://doi.org/10.1007/BF00121804.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2021: NOAA National Centers for Environmental Information (NCEI) U.S. billion-dollar weather and climate disasters. Accessed December 2021, https://www.ncdc.noaa.gov/billions/.

  • Ortiz-Bobea, A., T. R. Ault, C. M. Carrillo, R. G. Chambers, and D. B. Lobell, 2021: Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Climate Change, 11, 306312, https://doi.org/10.1038/s41558-021-01000-1.

    • Search Google Scholar
    • Export Citation
  • Otterman, J., 1990: A simple two-system-parameter model for surface-effected warming of the planetary boundary layer. Bound.-Layer Meteor., 51, 213227, https://doi.org/10.1007/BF00122138.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., and B. Stevens, 2019: The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. USA, 116, 24 39024 395, https://doi.org/10.1073/pnas.1906691116.

    • Search Google Scholar
    • Export Citation
  • Pearl, J., 2009: Causality. 2nd ed. Cambridge University Press, 464 pp.

  • Pendergrass, A. G., and Coauthors, 2020: Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Climate Change, 10, 191199, https://doi.org/10.1038/s41558-020-0709-0.

    • Search Google Scholar
    • Export Citation
  • Piriou, J.-M., J.-L. Redelsperger, J.-F. Geleyn, J.-P. Lafore, and F. Guichard, 2007: An approach for convective parameterization with memory: Separating microphysics and transport in grid-scale equations. J. Atmos. Sci., 64, 41274139, https://doi.org/10.1175/2007JAS2144.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2015: MODIS cloud optical properties: User guide for the collection 6 level-2 MOD06/MYD06 product and associated level-3 datasets. Version 1, 145 pp., https://modis-images.gsfc.nasa.gov/_docs/C6MOD06OPUserGuide.pdf.

  • Qiao, F., and X.-Z. Liang, 2015: Effects of cumulus parameterizations on predictions of summer flood in the central United States. Climate Dyn., 45, 727744, https://doi.org/10.1007/s00382-014-2301-7.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2016: Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J. Adv. Model. Earth Syst., 8, 764785, https://doi.org/10.1002/2015MS000621.

    • Search Google Scholar
    • Export Citation
  • Qiao, F., and X.-Z. Liang, 2017: Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Climate Dyn., 49, 225247, https://doi.org/10.1007/s00382-016-3338-6.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and Coauthors, 2020: GISS Model E2.2: A climate model optimized for the middle atmosphere—Model structure, climatology, variability, and climate sensitivity. J.Geophys. Res. Atmos., 125, e2019JD032204, https://doi.org/10.1029/2019JD032204.

    • Search Google Scholar
    • Export Citation
  • Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet. Sci., 37, 93115, https://doi.org/10.1146/annurev.earth.061008.134734.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., S. Li, P. W. Mote, K. M. Shell, N. Massey, S. N. Sparrow, D. C. Wallom, and M. R. Allen, 2017: Seasonal spatial patterns of projected anthropogenic warming in complex terrain: A modeling study of the western US. Climate Dyn., 48, 21912213, https://doi.org/10.1007/s00382-016-3200-x.

    • Search Google Scholar
    • Export Citation
  • Salvucci, G. D., J. A. Saleem, and R. Kaufmann, 2002: Investigating soil moisture feedbacks on precipitation with tests of Granger causality. Adv. Water Resour., 25, 13051312, https://doi.org/10.1016/S0309-1708(02)00057-X.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., and Coauthors, 2018: Land–atmosphere interactions: The LoCo perspective. Bull. Amer. Meteor. Soc., 99, 12531272, https://doi.org/10.1175/BAMS-D-17-0001.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., D. Lüthi, U. Beyerle, and E. Heise, 1999: The soil–precipitation feedback: A process study with a regional climate model. J. Climate, 12, 722741, https://doi.org/10.1175/1520-0442(1999)012<0722:TSPFAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, A. B., and J. L. Matthews, 2015: Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards, 77, 18291851, https://doi.org/10.1007/s11069-015-1678-x.

    • Search Google Scholar
    • Export Citation
  • Steck, H., and T. Jaakkola, 2003: Bias-corrected bootstrap and model uncertainty. NIPS’03: Proc. 16th Int. Conf. on Neural Information Processing Systems, Whistler, BC, Canada, https://papers.nips.cc/paper/2003/hash/2aaaddf27344ee54058548dc081c6541-Abstract.html.

  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, https://doi.org/10.1175/JCLI-3243.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and P. J. Webster, 1981: Clouds and climate: Sensitivity of simple systems. J. Atmos. Sci., 38, 235247, https://doi.org/10.1175/1520-0469(1981)038<0235:CACSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Sun, C., and X.-Z. Liang, 2020a: Improving U.S. extreme precipitation simulation: Sensitivity to physics parameterizations. Climate Dyn., 54, 48914918, https://doi.org/10.1007/s00382-020-05267-6.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2020b: Improving US extreme precipitation simulation: Dependence on cumulus parameterization and underlying mechanism. Climate Dyn., 55, 13251352, https://doi.org/10.1007/s00382-020-05328-w.

    • Search Google Scholar
    • Export Citation
  • Sun, C., and X.-Z. Liang, 2022: Understanding and reducing warm and dry summer biases in the central United States: Improving cumulus parameterization. J. Climate, 36, 20152034, https://doi.org/10.1175/JCLI-D-22-0254.1.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, https://doi.org/10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., M. M. Thornton, B. W. Mayer, Y. Wei, R. Devarakonda, R. S. Vose, and R. B. Cook, 2016: Daymet: Daily surface weather data on a 1-km grid for North America, version 3. ORNL DAAC, accessed December 2021, https://doi.org/10.3334/ORNLDAAC/2129.

  • Tiedtke, M, 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ting, M., R. Seager, C. Li, H. Liu, and N. Henderson, 2021: Future summer drying in the U.S. Corn Belt and the role of midlatitude storm tracks. J. Climate, 34, 90439056, https://doi.org/10.1175/JCLI-D-20-1004.1.

    • Search Google Scholar
    • Export Citation
  • Van Weverberg, K., and Coauthors, 2018: CAUSES: Attribution of surface radiation biases in NWP and climate models near the U.S. Southern Great Plains. J. Geophys. Res. Atmos., 123, 36123644, https://doi.org/10.1002/2017JD027188.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and P. A. Dirmeyer, 2012: Dissecting soil moisture–precipitation coupling. Geophys. Res. Lett., 39, L19711, https://doi.org/10.1029/2012GL053038.

    • Search Google Scholar
    • Export Citation
  • Wei, J., J. Zhao, H. Chen, and X.-Z. Liang, 2021: Coupling between land surface fluxes and lifting condensation level: Mechanisms and sensitivity to model physics parameterizations. J. Geophys. Res. Atmos., 126, e2020JD034313, https://doi.org/10.1029/2020JD034313.

    • Search Google Scholar
    • Export Citation
  • Williams, I. N., Y. Lu, L. M. Kueppers, W. J. Riley, S. C. Biraud, J. E. Bagley, and M. S. Torn, 2016: Land–atmosphere coupling and climate prediction over the U.S. southern Great Plains. J. Geophys. Res. Atmos., 121, 1212512144, https://doi.org/10.1002/2016JD025223.

    • Search Google Scholar
    • Export Citation
  • Wu, T., 2012: A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Climate Dyn., 38, 725744, https://doi.org/10.1007/s00382-011-0995-3.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., and Coauthors, 2018: A new research approach for observing and characterizing land–atmosphere feedback. Bull. Amer. Meteor. Soc., 99, 16391667, https://doi.org/10.1175/BAMS-D-17-0009.1.

    • Search Google Scholar
    • Export Citation
  • Zaitchik, B. F., J. A. Santanello, S. V. Kumar, and C. D. Peters-Lidard, 2013: Representation of soil moisture feedbacks during drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360367, https://doi.org/10.1175/JHM-D-12-069.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., S. Xie, S. A. Klein, H.-Y. Ma, S. Tang, K. Van Weverberg, C. J. Morcrette, and J. Petch, 2018: CAUSES: Diagnosis of the summertime warm bias in CMIP5 climate models at the ARM Southern Great Plains site. J. Geophys. Res. Atmos., 123, 29682992, https://doi.org/10.1002/2017JD027200.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1991: Convective stabilization in midlatitudes. Mon. Wea. Rev., 119, 19151928, https://doi.org/10.1175/1520-0493(1991)119<1915:CSIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Search Google Scholar
    • Export Citation
  • Zhou, S., and Coauthors, 2019: Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl. Acad. Sci. USA, 116, 18 84818 853, https://doi.org/10.1073/pnas.1904955116.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X.-Z. Liang, 2013: Impacts of the Bermuda high on regional climate and ozone over the United States. J. Climate, 26, 10181032, https://doi.org/10.1175/JCLI-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 560 560 29
Full Text Views 350 350 9
PDF Downloads 432 432 11