Increasing Compound Hazards of Tropical Cyclones and Heatwaves over Southeastern Coast of China under Climate Warming

Pinya Wang aJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
eNanjing Xinda Institute of Safety and Emergency Management, Nanjing, Jiangsu, China

Search for other papers by Pinya Wang in
Current site
Google Scholar
PubMed
Close
,
Yang Yang aJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
,
Daokai Xue bSchool of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Daokai Xue in
Current site
Google Scholar
PubMed
Close
,
Yi Qu cInstitute of Urban Meteorology, China Meteorological Administration, Beijing, China

Search for other papers by Yi Qu in
Current site
Google Scholar
PubMed
Close
,
Jianping Tang bSchool of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Jianping Tang in
Current site
Google Scholar
PubMed
Close
,
L. Ruby Leung dAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
, and
Hong Liao aJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China

Search for other papers by Hong Liao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Compound hazards are more destructive than the individual ones. Using observational and reanalysis datasets during 1960–2019, this study shows a remarkable concurrent relationship between extreme heatwaves (HWs) over southeastern coast of China (SECC) and tropical cyclone (TC) activities over western North Pacific (WNP). Overall, 70% of HWs co-occurred with TC activities (TC–HWs) in the past 60 years. Although the total frequency of TCs over WNP exhibited a decreasing trend, the occurrences of TC–HWs over SECC have been increasing, primarily due to the increasing HWs in the warming climate. In addition, TC–HWs are stronger and longer lasting than HWs that occur alone (AHWs). And in the long-term perspective, both AHWs and TC–HWs exhibit increasing trends, especially since the mid-1980s. The enhancement on HWs caused by TC activities is sustained until TCs make their landfalls and then collapse. Based on composite analysis, TC activities enhance HWs by modulating atmospheric circulations and triggering anomalous descending motion over southern China mainland which intensifies the western Pacific subtropical high (WPSH) and favors increased temperatures therein. Given the severe adverse impacts of TC–HWs on coastal populations, more research is needed to assess the future projections of TC–HWs, as HWs are expected to be more frequent and stronger as the climate warms, whereas TCs over WNP may occur less often.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Yang, yang.yang@nuist.edu.cn

Abstract

Compound hazards are more destructive than the individual ones. Using observational and reanalysis datasets during 1960–2019, this study shows a remarkable concurrent relationship between extreme heatwaves (HWs) over southeastern coast of China (SECC) and tropical cyclone (TC) activities over western North Pacific (WNP). Overall, 70% of HWs co-occurred with TC activities (TC–HWs) in the past 60 years. Although the total frequency of TCs over WNP exhibited a decreasing trend, the occurrences of TC–HWs over SECC have been increasing, primarily due to the increasing HWs in the warming climate. In addition, TC–HWs are stronger and longer lasting than HWs that occur alone (AHWs). And in the long-term perspective, both AHWs and TC–HWs exhibit increasing trends, especially since the mid-1980s. The enhancement on HWs caused by TC activities is sustained until TCs make their landfalls and then collapse. Based on composite analysis, TC activities enhance HWs by modulating atmospheric circulations and triggering anomalous descending motion over southern China mainland which intensifies the western Pacific subtropical high (WPSH) and favors increased temperatures therein. Given the severe adverse impacts of TC–HWs on coastal populations, more research is needed to assess the future projections of TC–HWs, as HWs are expected to be more frequent and stronger as the climate warms, whereas TCs over WNP may occur less often.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Y. Yang, yang.yang@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 990 KB)
Save
  • Alexander, L., 2011: Extreme heat rooted in dry soils. Nat. Geosci., 4, 1213, https://doi.org/10.1038/ngeo1045.

  • Barriopedro, D., E. M. Fischer, J. Luterbacher, R. M. Trigo, and R. García-Herrera, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220224, https://doi.org/10.1126/science.1201224.

    • Search Google Scholar
    • Export Citation
  • Borden, K. A., and S. L. Cutter, 2008: Spatial patterns of natural hazards mortality in the United States. Int. J. Health Geogr., 7, 64, https://doi.org/10.1186/1476-072X-7-64.

    • Search Google Scholar
    • Export Citation
  • Budd, G. M., 2008: Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport, 11, 2032, https://doi.org/10.1016/j.jsams.2007.07.003.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111116, https://doi.org/10.1038/nclimate2100.

    • Search Google Scholar
    • Export Citation
  • Cai, W., B. Ng, G. Wang, A. Santoso, L. Wu, and K. Yang, 2022: Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nat. Climate Change, 12, 228231, https://doi.org/10.1038/s41558-022-01282-z.

    • Search Google Scholar
    • Export Citation
  • Cao, L., Y. Zhu, G. Tang, F. Yuan, and Z. Yan, 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 43844392, https://doi.org/10.1002/joc.4639.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., L. T. Wood, J. L. Blaes, K. D. White, C. R. Hain, and C. J. Schultz, 2021: Soil moisture responses associated with significant tropical cyclone rainfall events. J. Oper. Meteor., 9, 117, https://doi.org/10.15191/nwajom.2021.0901.

    • Search Google Scholar
    • Export Citation
  • Deng, D., N. E. Davidson, L. Hu, K. J. Tory, M. C. N. Hankinson, and S. Gao, 2017: Potential vorticity perspective of vortex structure changes of Tropical Cyclone Bilis (2006) during a heavy rain event following landfall. Mon. Wea. Rev., 145, 18751895, https://doi.org/10.1175/MWR-D-16-0276.1.

    • Search Google Scholar
    • Export Citation
  • Deng, K., S. Yang, D. Gu, A. Lin, and C. Li, 2020: Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn., 54, 37513764, https://doi.org/10.1007/s00382-020-05203-8.

    • Search Google Scholar
    • Export Citation
  • Dosio, A., L. Mentaschi, M. F. Fischer, and K. Wyser, 2018: Extreme heat waves under 1.5°C and 2°C global warming. Environ. Res. Lett., 13, 054006, https://doi.org/10.1088/1748-9326/aab827.

    • Search Google Scholar
    • Export Citation
  • Ebi, K. L., and Coauthors, 2021: Extreme weather and climate change: Population health and health system implications. Annu. Rev. Public Health, 42, 293315, https://doi.org/10.1146/annurev-publhealth-012420-105026.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: The dependence of hurricane intensity on climate. Nature, 326, 483485, https://doi.org/10.1038/326483a0.

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347368, https://doi.org/10.1175/BAMS-89-3-347.

    • Search Google Scholar
    • Export Citation
  • Feudale, L., and J. Shukla, 2011: Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: An observational study. Climate Dyn., 36, 16911703, https://doi.org/10.1007/s00382-010-0788-0.

    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., S. I. Seneviratne, P. L. Vidale, D. Lüthi, and C. Schär, 2007: Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J. Climate, 20, 50815099, https://doi.org/10.1175/JCLI4288.1.

    • Search Google Scholar
    • Export Citation
  • Fu, C., and X. Teng, 1988: Climate anomalies in China associated with E1 Niño/Southern Oscillation. Sci. Atmos. Sin., 12, 133141, https://doi.org/10.3878/j.issn.1006-9895.1988.t1.11.

    • Search Google Scholar
    • Export Citation
  • Gao, S., Z. Meng, F. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe Tropical Storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 18811897, https://doi.org/10.1175/2008MWR2669.1.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 14481468, https://doi.org/10.1175/1520-0493(1991)119<1448:TCTCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, F., T. Li, J. Liu, M. Bi, and M. Peng, 2018: Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s. Dyn. Atmos. Oceans, 81, 4250, https://doi.org/10.1016/j.dynatmoce.2017.11.003.

    • Search Google Scholar
    • Export Citation
  • Hulley, G. C., B. Dousset and B. H. Kahn, 2020: Rising trends in heatwave metrics across Southern California. Earth’s Future, 8, e2020EF001480, https://doi.org/10.1029/2020EF001480.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, 2391 pp.

  • Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, https://doi.org/10.1029/2008JD009916.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS) unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 34773495, https://doi.org/10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Search Google Scholar
    • Export Citation
  • Kovats, R. S., and S. Hajat, 2008: Heat stress and public health: A critical review. Annu. Rev. Public Health, 29, 4155, https://doi.org/10.1146/annurev.publhealth.29.020907.090843.

    • Search Google Scholar
    • Export Citation
  • Kunze, S., 2021: Unraveling the effects of tropical cyclones on economic sectors worldwide: Direct and indirect impacts. Environ. Resour. Econ., 78, 545569, https://doi.org/10.1007/s10640-021-00541-5.

    • Search Google Scholar
    • Export Citation
  • Li, R. C. Y., W. Zhou, C. M. Shun, and T. C. Lee, 2017: Change in destructiveness of landfalling tropical cyclones over China in recent decades. J. Climate, 30, 33673379, https://doi.org/10.1175/JCLI-D-16-0258.1.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., T. Zhou, H. Mao, and C. Fu, 2019: Decadal variations in the relationship between the western Pacific subtropical high and summer heat waves in East China. J. Climate, 32, 16271640, https://doi.org/10.1175/JCLI-D-18-0093.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, T., R. L. Wilby, and C. Murphy, 2019: An emerging tropical cyclone–deadly heat compound hazard. Nat. Climate Change, 9, 602606, https://doi.org/10.1038/s41558-019-0525-6.

    • Search Google Scholar
    • Export Citation
  • Mei, W., F. Primeau, J. C. McWilliams, and C. Pasquero, 2013: Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean. Proc. Natl. Acad. Sci. USA, 110, 15 20715 210, https://doi.org/10.1073/pnas.1306753110.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., B. Chatenoux, H. Dao, A. De Bono, C. Herold, J. Kossin, F. Mouton, and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, https://doi.org/10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Perkins, S. E., 2015: A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale. Atmos. Res., 164165, 242267, https://doi.org/10.1016/j.atmosres.2015.05.014.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., J. Gratz, C. W. Landsea, D. Collins, M. A. Saunders, and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9, 2942, https://doi.org/10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Rohini, P., M. Rajeevan, and A. K. Srivastava, 2016: On the variability and increasing trends of heat waves over India. Sci. Rep., 2, 26153, https://doi.org/10.1038/srep26153.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S. I., T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky, and A. J. Teuling, 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev., 99, 125161, https://doi.org/10.1016/j.earscirev.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 95529555, https://doi.org/10.1073/pnas.0913352107.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, G. Ren, F. W. Zwiers, and T. Hu, 2016: Contribution of urbanization to warming in China. Nat. Climate Change, 6, 706709, https://doi.org/10.1038/nclimate2956.

    • Search Google Scholar
    • Export Citation
  • Wang, D., X. Li, W.-K. Tao, Y. Liu, and H. Zhou, 2009: Torrential rainfall processes associated with a landfall of severe Tropical Storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res., 91, 94104, https://doi.org/10.1016/j.atmosres.2008.07.005.

    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Tang, X. Sun, S. Wang, J. Wu, X. Dong, and J. Fang, 2017: Heatwaves in China: Definitions, leading patterns and connections to large‐scale atmospheric circulation and SSTs. J. Geophys. Res. Atmos., 122, 10 67910 699, https://doi.org/10.1002/2017JD027180.

    • Search Google Scholar
    • Export Citation
  • Wang, P., J. Tang, S. Wang, X. Dong, and J. Fang, 2018a: Regional heatwaves in China: A cluster analysis. Climate Dyn., 50, 19011917, https://doi.org/10.1007/s00382-017-3728-4.

    • Search Google Scholar
    • Export Citation
  • Wang, P., P. Hui, D. Xue, and J. Tang, 2018b: Future projection of heat waves over China under global warming within the CORDEX-EA-II project. Climate Dyn., 53, 957973, https://doi.org/10.1007/s00382-019-04621-7.

    • Search Google Scholar
    • Export Citation
  • Wang, P., L. R. Leung, J. Lu, F. Song, and J. Tang, 2019: Extreme wet-bulb temperatures in China: The significant role of moisture. J. Geophys. Res. Atmos., 124, 11 94411 960, https://doi.org/10.1029/2019JD031477.

    • Search Google Scholar
    • Export Citation
  • Wang, P., Y. Yang, J. Tang, L. R. Leung, and H. Liao, 2021: Intensified humid heat events under global warming. Geophys. Res. Lett., 48, e2020GL091462, https://doi.org/10.1029/2020GL091462.

    • Search Google Scholar
    • Export Citation
  • Wang, T., Z. Zhong, Y. Sun, and J. Wang, 2019: Impacts of tropical cyclones on the meridional movement of the western Pacific subtropical high. Atmos. Sci. Lett., 20, e893, https://doi.org/10.1002/asl.893.

    • Search Google Scholar
    • Export Citation
  • Wang, W., W. Zhou, X. Li, X. Wang, and D. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 29232941, https://doi.org/10.1007/s00382-015-2741-8.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. J. S. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 18441846, https://doi.org/10.1126/science.1116448.

    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, https://doi.org/10.1175/JCLI-D-12-00830.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Wen, and R. Huang, 2020: Tropical cyclones in a warming climate. Sci. China Earth Sci., 63, 456458, https://doi.org/10.1007/s11430-019-9574-4.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., H. Lin, J. Li, Z. Jiang, and T. Ma, 2012: Heat wave frequency variability over North America: Two distinct leading modes. J. Geophys. Res., 117, D02102, https://doi.org/10.1029/2011JD016908.

    • Search Google Scholar
    • Export Citation
  • Xue, F., X. Dong, and R.-P. Lin, 2017: Two anomalous convective systems in the tropical western Pacific and their influences on the East Asian summer monsoon. Atmos. Ocean. Sci. Lett., 10, 319324, https://doi.org/10.1080/16742834.2017.1328969.

    • Search Google Scholar
    • Export Citation
  • Yao, R., Y. Hu, P. Sun, Y. Bian, R. Liu, and S. Zhang, 2022: Effects of urbanization on heat waves based on the wet-bulb temperature in the Yangtze River delta urban agglomeration, China. Urban Climate, 41, 101067, https://doi.org/10.1016/j.uclim.2021.101067.

    • Search Google Scholar
    • Export Citation
  • Ying, M., W. Zhang, H. Yu, X. Lu, J. Feng, Y. Fan, Y. Zhu, and D. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287301, https://doi.org/10.1175/JTECH-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • You, Q., Z. Jiang, L. Kong, Z. Wu, Y. Bao, S. Kang, and N. Pepin, 2017: A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dyn., 48, 39753989, https://doi.org/10.1007/s00382-016-3315-0.

    • Search Google Scholar
    • Export Citation
  • Zhao, D., Y. Lin, Y. Li, and X. Gao, 2021: An extreme heat event induced by Typhoon Lekima (2019) and its contributing factors. J. Geophys. Res. Atmos., 126, e2021JD034760, https://doi.org/10.1029/2021JD034760.

    • Search Google Scholar
    • Export Citation
  • Zhao, J., R. Zhan, Y. Wang, and H. Xu, 2018: Contribution of the interdecadal Pacific oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Climate, 31, 82118224, https://doi.org/10.1175/JCLI-D-18-0202.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., P. Jones, L. Cao, Z. Yan, S. Zha, Y. Zhu, Y. Yu, and G. Tang, 2014: Trend of surface air temperature in eastern China and associated large-scale climate variability over the last 100 years. J. Climate, 27, 46934703, https://doi.org/10.1175/JCLI-D-13-00397.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, Z., 2006: A possible cause of a regional climate model’s failure in simulating the East Asian summer monsoon. Geophys. Res. Lett., 33, L24707, https://doi.org/10.1029/2006GL027654.

    • Search Google Scholar
    • Export Citation
  • Zhong, Z., X. Chen, X.-Q. Yang, Y. Ha, and Y. Sun, 2019: The relationship of frequent tropical cyclone activities over the western North Pacific and hot summer days in central-eastern China. Theor. Appl. Climatol., 138, 13951404, https://doi.org/10.1007/s00704-019-02908-7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1250 1250 46
Full Text Views 408 408 9
PDF Downloads 492 492 15