Assessment of Large-Scale Indices of Surface Temperature during the Historical Period in the CMIP6 Ensemble

A. Bodas-Salcedo aMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by A. Bodas-Salcedo in
Current site
Google Scholar
PubMed
Close
,
J. M. Gregory aMet Office Hadley Centre, Exeter, United Kingdom
bNational Centre for Atmospheric Science, University of Reading, Reading, United Kingdom

Search for other papers by J. M. Gregory in
Current site
Google Scholar
PubMed
Close
,
D. M. H. Sexton aMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by D. M. H. Sexton in
Current site
Google Scholar
PubMed
Close
, and
C. P. Morice aMet Office Hadley Centre, Exeter, United Kingdom

Search for other papers by C. P. Morice in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We develop a statistical method to assess CMIP6 simulations of large-scale surface temperature change during the historical period (1850–2014), considering all time scales, allowing for the different unforced variability of each model and the observations, observational uncertainty, and variable ensemble size. The generality of this method, and the fact that it incorporates information about the unforced variability, makes it a useful model assessment tool. We apply this method to the historical simulations of the CMIP6 multimodel ensemble. We use three indices that measure different aspects of large-scale surface air temperature change: global mean, hemispheric gradient, and a recently developed index that captures the sea surface temperature (SST) pattern in the tropics (SST#; see Fueglistaler and Silvers). We use the following observations: HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST#. In each case, we test the hypothesis that the model’s forced response is compatible with the observations, accounting for unforced variability in both models and observations as well as measurement uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric gradient than for the global mean, for which half of the models fail the test. The tropical SST pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly modulate the relationship between energy imbalance and global-mean surface temperature anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this should be a focus area for future improvements due to its potential implications for the global-mean temperature evolution in decadal time scales.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Bodas-Salcedo, alejandro.bodas@metoffice.gov.uk

Abstract

We develop a statistical method to assess CMIP6 simulations of large-scale surface temperature change during the historical period (1850–2014), considering all time scales, allowing for the different unforced variability of each model and the observations, observational uncertainty, and variable ensemble size. The generality of this method, and the fact that it incorporates information about the unforced variability, makes it a useful model assessment tool. We apply this method to the historical simulations of the CMIP6 multimodel ensemble. We use three indices that measure different aspects of large-scale surface air temperature change: global mean, hemispheric gradient, and a recently developed index that captures the sea surface temperature (SST) pattern in the tropics (SST#; see Fueglistaler and Silvers). We use the following observations: HadCRUT5 for the first two indices, and AMIPII and ERSSTv5 for SST#. In each case, we test the hypothesis that the model’s forced response is compatible with the observations, accounting for unforced variability in both models and observations as well as measurement uncertainty. This hypothesis is accepted more often (75% of the models) for the hemispheric gradient than for the global mean, for which half of the models fail the test. The tropical SST pattern is poorly simulated in all models. Given that the tropical SST pattern can strongly modulate the relationship between energy imbalance and global-mean surface temperature anomalies on annual to decadal time scales (short-term feedback parameter), we suggest this should be a focus area for future improvements due to its potential implications for the global-mean temperature evolution in decadal time scales.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alejandro Bodas-Salcedo, alejandro.bodas@metoffice.gov.uk
Save
  • Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419434, https://doi.org/10.1007/s003820050291.

    • Search Google Scholar
    • Export Citation
  • Andrews, T., and M. J. Webb, 2018: The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. J. Climate, 31, 641654, https://doi.org/10.1175/JCLI-D-17-0087.1.

    • Search Google Scholar
    • Export Citation
  • Annamalai, H., J. Hafner, K. P. Sooraj, and P. Pillai, 2013: Global warming shifts the monsoon circulation, drying South Asia. J. Climate, 26, 27012718, https://doi.org/10.1175/JCLI-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Bock, L., and Coauthors, 2020: Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos., 125, e2019JD032321, https://doi.org/10.1029/2019JD032321.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2020: Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010.

    • Search Google Scholar
    • Export Citation
  • Braganza, K., D. Karoly, A. Hirst, M. Mann, P. Stott, R. Stouffer, and S. Tett, 2003: Simple indices of global climate variability and change: Part I—Variability and correlation structure. Climate Dyn., 20, 491502, https://doi.org/10.1007/s00382-002-0286-0.

    • Search Google Scholar
    • Export Citation
  • Brunner, L., A. G. Pendergrass, F. Lehner, A. L. Merrifield, R. Lorenz, and R. Knutti, 2020: Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn., 11, 9951012, https://doi.org/10.5194/esd-11-995-2020.

    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and J. M. Gregory, 2017: Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl. Acad. Sci. USA, 114, 13 12613 131, https://doi.org/10.1073/pnas.1714308114.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., E. Hawkins, L. J. Wilcox, R. T. Sutton, C. J. Smith, M. B. Andrews, and P. M. Forster, 2020: Sensitivity of historical climate simulations to uncertain aerosol forcing. Geophys. Res. Lett., 47, e2019GL085806, https://doi.org/10.1029/2019GL085806.

    • Search Google Scholar
    • Export Citation
  • Dittus, A. J., E. Hawkins, J. I. Robson, D. M. Smith, and L. J. Wilcox, 2021: Drivers of recent North Pacific decadal variability: The role of aerosol forcing. Earth’s Future, 9, e2021EF002249, https://doi.org/10.1029/2021EF002249.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2019: Taking climate model evaluation to the next level. Nat. Climate Change, 9, 102110, https://doi.org/10.1038/s41558-018-0355-y.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2020: Earth System Model Evaluation Tool (ESMValTool) v2.0—An extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev., 13, 33833438, https://doi.org/10.5194/gmd-13-3383-2020.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., A. S. Phillips, and C. Deser, 2020: Evaluation of leading modes of climate variability in the CMIP archives. J. Climate, 33, 55275545, https://doi.org/10.1175/JCLI-D-19-1024.1.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., Lamarque, J.-F., Hannay, C., Rosenbloom, N., Tilmes, S., DeRepentigny, P. A. Jahn, and C. Deser, 2022: Spurious late historical-era warming in CESM2 driven by prescribed biomass burning emissions. Geophys. Res. Lett., 49, e2021GL097420, https://doi.org/10.1029/2021GL097420.

    • Search Google Scholar
    • Export Citation
  • Flynn, C. M., and T. Mauritsen, 2020: On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys., 20, 78297842, https://doi.org/10.5194/acp-20-7829-2020.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and L. G. Silvers, 2021: The peculiar trajectory of global warming. J. Geophy. Res. Atmos., 126, e2020JD033629, https://doi.org/10.1029/2020JD033629.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott, 2002: Detecting anthropogenic influence with a multi-model ensemble. Geophys. Res. Lett., 29, 1970, https://doi.org/10.1029/2002GL015836.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst., 11, 20892129, https://doi.org/10.1029/2018MS001603.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett., 43, 39113920, https://doi.org/10.1002/2016GL068406.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., T. Andrews, P. Ceppi, T. Mauritsen, and M. J. Webb, 2020: How accurately can the climate sensitivity to CO2 be estimated from historical climate change? Climate Dyn., 54, 129157, https://doi.org/10.1007/s00382-019-04991-y.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 287–422, https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter02.pdf.

  • Heede, U. K., and A. V. Fedorov, 2021: Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Climate Change, 11, 696703, https://doi.org/10.1038/s41558-021-01101-x.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017a: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 81798205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2017b: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), version 5. NOAA National Centers for Environmental Information, accessed 1 September 2021, https://doi.org/10.7289/V5T72FNM.

  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Climate, 21, 51455153, https://doi.org/10.1175/2008JCLI2292.1.

    • Search Google Scholar
    • Export Citation
  • Jones, G. S., 2020: “Apples and oranges”: On comparing simulated historic near-surface temperature changes with observations. Quart. J. Roy. Meteor. Soc., 146, 37473771, https://doi.org/10.1002/qj.3871.

    • Search Google Scholar
    • Export Citation
  • Jones, G. S., P. A. Stott, and N. Christidis, 2013: Attribution of observed historical near–surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos., 118, 40014024, https://doi.org/10.1002/jgrd.50239.

    • Search Google Scholar
    • Export Citation
  • Jones, P., 2016: The reliability of global and hemispheric surface temperature records. Adv. Atmos. Sci., 33, 269282, https://doi.org/10.1007/s00376-015-5194-4.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and Coauthors, 2019: Developments in the MPI‐M Earth system model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst., 11, 9981038, https://doi.org/10.1029/2018MS001400.

    • Search Google Scholar
    • Export Citation
  • McKinnon, K. A., and C. Deser, 2018: Internal variability and regional climate trends in an observational large ensemble. J. Climate, 31, 67836802, https://doi.org/10.1175/JCLI-D-17-0901.1.

    • Search Google Scholar
    • Export Citation
  • Miller, R. L., 1997: Tropical thermostats and low cloud cover. J. Climate, 10, 409440, https://doi.org/10.1175/1520-0442(1997)010<0409:TTALCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morice, C. P., and Coauthors, 2021: An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos., 126, e2019JD032361, https://doi.org/10.1029/2019JD032361.

    • Search Google Scholar
    • Export Citation
  • Mulcahy, J. P., and Coauthors, 2018: Improved aerosol processes and effective radiative forcing in HadGEM3 and UKESM1. J. Adv. Model. Earth Syst., 10, 27862805, https://doi.org/10.1029/2018MS001464.

    • Search Google Scholar
    • Export Citation
  • Mulcahy, J. P., and Coauthors, 2023: UKESM1.1: Development and evaluation of an updated configuration of the UK Earth System Model. Geosci. Model Dev., https://doi.org/10.5194/gmd-2022-113, in press.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., and D. Notz, 2017: Consistently estimating internal climate variability from climate model simulations. J. Climate, 30, 95559573, https://doi.org/10.1175/JCLI-D-16-0428.1.

    • Search Google Scholar
    • Export Citation
  • Olonscheck, D., M. Rugenstein, and J. Marotzke, 2020: Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys. Res. Lett., 47, e2019GL086773, https://doi.org/10.1029/2019GL086773.

    • Search Google Scholar
    • Export Citation
  • Orbe, C., and Coauthors, 2020: Representation of modes of variability in six U.S. climate models. J. Climate, 33, 75917617, https://doi.org/10.1175/JCLI-D-19-0956.1.

    • Search Google Scholar
    • Export Citation
  • PAGES 2k Consortium, 2013: Continental-scale temperature variability during the past two millennia. Nat. Geosci., 6, 339346, https://doi.org/10.1038/ngeo1797.

    • Search Google Scholar
    • Export Citation
  • PAGES 2k Consortium, 2019: Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci., 12, 643649, https://doi.org/10.1038/s41561-019-0400-0.

    • Search Google Scholar
    • Export Citation
  • Parsons, L. A., M. K. Brennan, R. C. J. Wills, and C. Proistosescu, 2020: Magnitudes and spatial patterns of interdecadal temperature variability in CMIP6. Geophys. Res. Lett., 47, e2019GL086588, https://doi.org/10.1029/2019GL086588.

    • Search Google Scholar
    • Export Citation
  • Paulot, F., D. Paynter, P. Ginoux, V. Naik, and L. W. Horowitz, 2018: Changes in the aerosol direct radiative forcing from 2001 to 2015: Observational constraints and regional mechanisms. Atmos. Chem. Phys., 18, 13 26513 281, https://doi.org/10.5194/acp-18-13265-2018.

    • Search Google Scholar
    • Export Citation
  • Planton, Y. Y., and Coauthors, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102, E193E217, https://doi.org/10.1175/BAMS-D-19-0337.1.

    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303312, https://doi.org/10.1175/BAMS-89-3-303.

    • Search Google Scholar
    • Export Citation
  • Richardson, M., K. Cowtan, E. Hawkins and M. B. Stolpe, 2016: Reconciled climate response estimates from climate models and the energy budget of Earth. Nat. Climate Change, 6, 931935, https://doi.org/10.1038/nclimate3066.

    • Search Google Scholar
    • Export Citation
  • Rieger, L. A., J. N. S. Cole, J. C. Fyfe, S. Po-Chedley, P. J. Cameron-Smith, P. J. Durack, N. P. Gillett, and Q. Tang, 2020: Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment. Geosci. Model Dev., 13, 48314843, https://doi.org/10.5194/gmd-13-4831-2020.

    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., R. Knutti, and P. Caldwell, 2015: A representative democracy to reduce interdependency in a multimodel ensemble. J. Climate, 28, 51715194, https://doi.org/10.1175/JCLI-D-14-00362.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Climate Change, 9, 517522, https://doi.org/10.1038/s41558-019-0505-x.

    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, https://doi.org/10.1175/JCLI-D-12-00521.1.

    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and Coauthors, 2021: Energy budget constraints on the time history of aerosol forcing and climate sensitivity. J. Geophys. Res. Atmos., 126, e2020JD033622, https://doi.org/10.1029/2020JD033622.

    • Search Google Scholar
    • Export Citation
  • Suarez-Gutierrez, L., S. Milinski, and N. Maher, 2021: Exploiting large ensembles for a better yet simpler climate model evaluation. Climate Dyn., 57, 25572580, https://doi.org/10.1007/s00382-021-05821-w.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., D. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea ice concentration boundary conditions for AMIP II simulations. PCMDI Rep. 60, 28 pp., https://pcmdi.llnl.gov/report/pdf/60.pdf.

  • Wang, C., B. J. Soden, W. Yang, and G. A. Vecchi, 2021: Compensation between cloud feedback and aerosol-cloud interaction in CMIP6 models. Geophys. Res. Lett., 48, e2020GL091024, https://doi.org/10.1029/2020GL091024.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., J.-L. Dufresne, Y. Kosaka, T. Mauritsen, and H. Tatebe, 2021: Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Climate Change, 11, 3337, https://doi.org/10.1038/s41558-020-00933-3.

    • Search Google Scholar
    • Export Citation
  • Wills, R. C. J., Y. Dong, C. Proistosecu, K. C. Armour, and D. S. Battisti, 2022: Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett., 49, e2022GL100011, https://doi.org/10.1029/2022GL100011.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2021: The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models. Atmos. Chem. Phys., 21, 18 60918 627, https://doi.org/10.5194/acp-21-18609-2021.

    • Search Google Scholar
    • Export Citation
  • Zinke, J., S. A. Browning, A. Hoell, and I. D. Goodwin, 2021: The west Pacific gradient tracks ENSO and zonal Pacific sea surface temperature gradient during the last millennium. Sci. Rep., 11, 20395, https://doi.org/10.1038/s41598-021-99738-3.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 702 702 22
Full Text Views 204 204 10
PDF Downloads 297 297 10