Heat Storage in the Upper Indian Ocean: The Role of Wind-Driven Redistribution

Jing Duan aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China

Search for other papers by Jing Duan in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China
cCAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7239-5756
,
Lijing Cheng dInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Lijing Cheng in
Current site
Google Scholar
PubMed
Close
,
Pengfei Lin eLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
fUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Pengfei Lin in
Current site
Google Scholar
PubMed
Close
, and
Fan Wang aCAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
bLaoshan Laboratory, Qingdao, China
fUniversity of Chinese Academy of Sciences, Beijing, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The heat content in the Indian Ocean has been increasing owing to anthropogenic greenhouse warming. Yet, where and how the anthropogenic heat is stored in the Indian Ocean have not been comprehended. Analysis of various observational and model-based datasets since the 1950s reveals a robust spatial pattern of the 0–700 m ocean heat content trend (ΔOHC), with enhanced warming in the subtropical southern Indian Ocean (SIO) but weak to minimal warming in the tropical Indian Ocean (TIO). The meridional temperature gradient between the TIO and SIO declined by 16.4% ± 7.5% during 1958–2014. The heat redistribution driven by time-varying surface winds plays a crucial role in shaping this ΔOHC pattern. Sensitivity experiments using a simplified ocean dynamical model suggest that changes in surface winds over the Indian Ocean, particularly those of the SIO, caused a convergence trend in the upper SIO and a divergence trend in the upper TIO. These wind changes primarily include the enhancements of westerlies in the Southern Ocean and the subtropical anticyclone in the SIO. Albeit with systematic biases, the ΔOHC pattern and surface wind changes simulated by phase 6 of the Coupled Model Intercomparison Project (CMIP6) models broadly resemble the observation and highlight the essence of external forcing in causing these changes. This heat storage pattern is projected to persist in the model-projected future, potentially impacting future climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

The heat content in the Indian Ocean has been increasing owing to anthropogenic greenhouse warming. Yet, where and how the anthropogenic heat is stored in the Indian Ocean have not been comprehended. Analysis of various observational and model-based datasets since the 1950s reveals a robust spatial pattern of the 0–700 m ocean heat content trend (ΔOHC), with enhanced warming in the subtropical southern Indian Ocean (SIO) but weak to minimal warming in the tropical Indian Ocean (TIO). The meridional temperature gradient between the TIO and SIO declined by 16.4% ± 7.5% during 1958–2014. The heat redistribution driven by time-varying surface winds plays a crucial role in shaping this ΔOHC pattern. Sensitivity experiments using a simplified ocean dynamical model suggest that changes in surface winds over the Indian Ocean, particularly those of the SIO, caused a convergence trend in the upper SIO and a divergence trend in the upper TIO. These wind changes primarily include the enhancements of westerlies in the Southern Ocean and the subtropical anticyclone in the SIO. Albeit with systematic biases, the ΔOHC pattern and surface wind changes simulated by phase 6 of the Coupled Model Intercomparison Project (CMIP6) models broadly resemble the observation and highlight the essence of external forcing in causing these changes. This heat storage pattern is projected to persist in the model-projected future, potentially impacting future climate.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 746 KB)
Save
  • Albert, J., and P. K. Bhaskaran, 2020: Ocean heat content and its role in tropical cyclogenesis for the Bay of Bengal basin. Climate Dyn., 55, 33433362, https://doi.org/10.1007/s00382-020-05450-9.

    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2019: IndOOS-2: A roadmap to sustained observations of the Indian Ocean for 2020–2030. CLIVAR-4/2019, GOOS-237, 206 pp., https://doi.org/10.36071/clivar.rp.4.2019.

  • Bindoff, N. L., and T. J. Mcdougall, 1994: Diagnosing climate change and ocean ventilation using hydrographic data. J. Phys. Oceanogr., 24, 11371152, https://doi.org/10.1175/1520-0485(1994)024<1137:DCCAOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and T. Cowan, 2007: Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: Ozone depletion versus greenhouse forcing. J. Climate, 20, 681693, https://doi.org/10.1175/JCLI4028.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, S. Godfrey, and S. Wijffels, 2010: Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J. Climate, 23, 197206, https://doi.org/10.1175/2009JCLI3081.1.

    • Search Google Scholar
    • Export Citation
  • Cai, W., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.

  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Search Google Scholar
    • Export Citation
  • Cheng, L., J. Abraham, Z. Hausfather, and K. E. Trenberth, 2019: How fast are the oceans warming? Science, 363, 128129, https://doi.org/10.1126/science.aav7619.

    • Search Google Scholar
    • Export Citation
  • Clément, L., E. L. McDonagh, A. Marzocchi, and A. J. G. Nurser, 2020: Signature of ocean warming at the mixed layer base. Geophys. Res. Lett., 47, e2019GL086269, https://doi.org/10.1029/2019GL086269.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Desbruyères, D., E. L. McDonagh, B. A. King, and V. Thierry, 2017: Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate, 30, 19851997, https://doi.org/10.1175/JCLI-D-16-0396.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and Coauthors, 2020: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: A new CESM1 large ensemble community resource. J. Climate, 33, 78357858, https://doi.org/10.1175/JCLI-D-20-0123.1.

    • Search Google Scholar
    • Export Citation
  • Ding, M., and Coauthors, 2022: A century-long eddy-resolving simulation of global oceanic large- and mesoscale state. Sci. Data, 9, 691, https://doi.org/10.1038/s41597-022-01766-9.

    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, https://doi.org/10.1007/s00382-013-1722-z.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and S.-P. Xie, 2008: Role of atmospheric adjustments in the tropical Indian Ocean warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Search Google Scholar
    • Export Citation
  • Duan, J., and Coauthors, 2021: Rapid sea level rise in the Southern Hemisphere subtropical oceans. J. Climate, 34, 94019423, https://doi.org/10.1175/JCLI-D-21-0248.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362, https://doi.org/10.1175/2010JCLI3377.1.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., S. E. Wijffels, and P. J. Gleckler, 2014: Long-term sea-level change revisited: The role of salinity. Environ. Res. Lett., 9, 114017, https://doi.org/10.1088/1748-9326/9/11/114017.

    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Search Google Scholar
    • Export Citation
  • Feng, M., H. H. Hendon, S. P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014GL062509.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B. and Coauthors, 2021: Ocean, cryosphere and sea level change. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 1211–1362.

  • Frederikse, T., and Coauthors, 2020: The causes of sea-level rise since 1900. Nature, 584, 393397, https://doi.org/10.1038/s41586-020-2591-3.

    • Search Google Scholar
    • Export Citation
  • Gao, L., S. R. Rintoul, and W. Yu, 2018: Recent wind-driven change in Subantarctic Mode Water and its impact on ocean heat storage. Nat. Climate Change, 8, 5863, https://doi.org/10.1038/s41558-017-0022-8.

    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2016: The Detection and Attribution Model Intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev., 9, 36853697, https://doi.org/10.5194/gmd-9-3685-2016.

    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geosci. Model Dev., 9, 32313296, https://doi.org/10.5194/gmd-9-3231-2016.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2016: Warming of the global ocean: Spatial structure and water-mass trends. J. Climate, 29, 49494963, https://doi.org/10.1175/JCLI-D-15-0607.1.

    • Search Google Scholar
    • Export Citation
  • Han, L., and R. X. Huang, 2020: Using the Helmholtz decomposition to define the Indian ocean meridional overturning streamfunction. J. Phys. Oceanogr., 50, 679694, https://doi.org/10.1175/JPO-D-19-0218.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific oceans during recent decades. Geophys. Res. Lett., 33, L23615, https://doi.org/10.1029/2006GL027982.

    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, and W. P. M. De Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Search Google Scholar
    • Export Citation
  • Han, W., D. Stammer, G. A. Meehl, A. Hu, F. Sienz, and L. Zhang, 2018: Multi-decadal trend and decadal variability of the regional sea level over the Indian Ocean since the 1960s: Roles of climate modes and external forcing. Climate, 6, 51, https://doi.org/10.3390/cli6020051.

    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the Interdecadal Pacific Oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Search Google Scholar
    • Export Citation
  • Hermes, J. C., and C. J. C. Reason, 2008: Annual cycle of the south Indian Ocean (Seychelles-Chagos) thermocline ridge in a regional ocean model. J. Geophys. Res., 113, C04035, https://doi.org/10.1029/2007JC004363.

    • Search Google Scholar
    • Export Citation
  • Huang, R. X., 2020: Heaving, Stretching and Spicing Modes: Climate Variability in the Ocean. Springer, 391 pp.

  • Ishii, M., Y. Fukuda, S. Hirahara, S. Yasui, T. Suzuki, and K. Sato, 2017: Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA, 13, 163167, https://doi.org/10.2151/sola.2017-030.

    • Search Google Scholar
    • Export Citation
  • Jyoti, J., P. Swapna, R. Krishnan, and C. V. Naidu, 2019: Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st century. Climate Dyn., 53, 44134432, https://doi.org/10.1007/s00382-019-04795-0.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2014: Detecting processes contributing to interannual halosteric and thermosteric sea level variability. J. Climate, 27, 24172426, https://doi.org/10.1175/JCLI-D-13-00412.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Search Google Scholar
    • Export Citation
  • Lee, T., 2004: Decadal weakening of the shallow overturning circulation in the south Indian Ocean. Geophys. Res. Lett., 31, L18305, https://doi.org/10.1029/2004GL020884.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., 2000: Warming of the world ocean. Science, 287, 22252229, https://doi.org/10.1126/science.287.5461.2225.

  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009 : Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Li, S., W. Liu, K. Lyu, and X. Zhang, 2021: The effects of historical ozone changes on Southern Ocean heat uptake and storage. Climate Dyn., 57, 22692285, https://doi.org/10.1007/s00382-021-05803-y.

    • Search Google Scholar
    • Export Citation
  • Li, X., S. P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, A. Hu, G. A. Meehl, and F. Wang, 2018: Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Climate, 31, 78637884, https://doi.org/10.1175/JCLI-D-18-0116.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and Coauthors, 2020a: Eddy-resolving simulation of CAS-LICOM3 for phase 2 of the ocean model intercomparison project. Adv. Atmos. Sci., 37, 10671080, https://doi.org/10.1007/s00376-020-0057-z.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper–Indian Ocean thermal variability. J. Climate, 33, 72337253, https://doi.org/10.1175/JCLI-D-19-0851.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., G. J. Goni, J. A. Knaff, C. Forbes, and M. M. Ali, 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, https://doi.org/10.1007/s11069-012-0214-5.

    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926–, https://doi.org/10.1038/ncomms10926.

    • Search Google Scholar
    • Export Citation
  • Liu, W., J. Lu, S. P. Xie, and A. Fedorov, 2018: Southern Ocean heat uptake, redistribution, and storage in a warming climate: The role of meridional overturning circulation. J. Climate, 31, 47274743, https://doi.org/10.1175/JCLI-D-17-0761.1.

    • Search Google Scholar
    • Export Citation
  • Liu, W., M. I. Hegglin, R. Checa-Garcia, S. Li, N. P. Gillett, K. Lyu, X. Zhang, and N. C. Swart, 2022: Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming. Nat. Climate Change, 12, 365372, https://doi.org/10.1038/s41558-022-01320-w.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., Y. Li, J. Duan, P. Lin, and F. Wang, 2022: Multidecadal sea level rise in the southeast Indian Ocean: The role of ocean salinity change. J. Climate, 35, 14791496, https://doi.org/10.1175/JCLI-D-21-0288.1.

    • Search Google Scholar
    • Export Citation
  • Lyu, K., X. Zhang, J. A. Church, and Q. Wu, 2020: Processes responsible for the Southern Hemisphere ocean heat uptake and redistribution under anthropogenic warming. J. Climate, 33, 37873807, https://doi.org/10.1175/JCLI-D-19-0478.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., M. Feng, B. M. Sloyan, and J. Lan, 2019: Pacific influences on the meridional temperature transport of the Indian Ocean. J. Climate, 32, 10471061, https://doi.org/10.1175/JCLI-D-18-0349.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., M. Feng, J. Lan, and D. Hu, 2020: Projected future changes of meridional heat transport and heat balance of the Indian Ocean. Geophys. Res. Lett., 47, e2019GL086803, https://doi.org/10.1029/2019GL086803.

    • Search Google Scholar
    • Export Citation
  • Maneesha, K., Y. Sadhuram, and K. V. S. R. Prasad, 2015: Role of upper ocean parameters in the genesis, intensification and tracks of cyclones over the Bay of Bengal. J. Oper. Oceanogr., 8, 133146, https://doi.org/10.1080/1755876X.2015.1087185.

    • Search Google Scholar
    • Export Citation
  • McMonigal, K., K. L. Gunn, L. M. Beal, S. Elipot, and J. K. Willis, 2022: Reduction in meridional heat export contributes to recent Indian Ocean warming. J. Phys. Oceanogr., 52, 329345, https://doi.org/10.1175/JPO-D-21-0085.1.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2021: Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci., 14, 3642, https://doi.org/10.1038/s41561-020-00669-x.

    • Search Google Scholar
    • Export Citation
  • Meng, L., W. Zhuang, W. Zhang, C. Yan, and X. H. Yan, 2020: Variability of the shallow overturning circulation in the Indian Ocean. J. Geophys. Res. Oceans, 125, e2019JC015651, https://doi.org/10.1029/2019JC015651.

    • Search Google Scholar
    • Export Citation
  • Mohapatra, S., and C. Gnanaseelan, 2021: A new mode of decadal variability in the tropical Indian Ocean subsurface temperature and its association with shallow meridional overturning circulation. Global Planet. Change, 207, 103656, https://doi.org/10.1016/j.gloplacha.2021.103656.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2021: Interannual variability in sea surface height at southern midlatitudes of the Indian Ocean. J. Phys. Oceanogr., 51, 15951609, https://doi.org/10.1175/JPO-D-20-0279.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520, https://doi.org/10.1126/science.1185782.

    • Search Google Scholar
    • Export Citation
  • Nieves, V., J. K. Willis, and W. C. Patzert, 2015: Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349, 532535, https://doi.org/10.1126/science.aaa4521.

    • Search Google Scholar
    • Export Citation
  • Oliver, E. C. J., V. Lago, A. J. Hobday, N. J. Holbrook, S. D. Ling, and C. N. Mundy, 2018: Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr., 161, 116130, https://doi.org/10.1016/j.pocean.2018.02.007.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 34613482, https://doi.org/10.5194/gmd-9-3461-2016.

    • Search Google Scholar
    • Export Citation
  • Perrette, M., F. Landerer, R. Riva, K. Frieler, and M. Meinshausen, 2013: A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dyn., 4, 1129, https://doi.org/10.5194/esd-4-11-2013.

    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Search Google Scholar
    • Export Citation
  • Qu, T., I. Fukumori, and R. A. Fine, 2019: Spin-up of the Southern Hemisphere super gyre. J. Geophys. Res. Oceans, 124, 154170, https://doi.org/10.1029/2018JC014391.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., N. L. Bindoff, H. E. Phillips, and M. Feng, 2020: Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nat. Commun., 11, 2008, https://doi.org/10.1038/s41467-020-15754-3.

    • Search Google Scholar
    • Export Citation
  • Rathore, S., R. Goyal, B. Jangir, C. C. Ummenhofer, M. Feng, and M. Mishra, 2022: Interactions between a marine heatwave and Tropical Cyclone Amphan in the Bay of Bengal in 2020. Front. Climate, 4, 861477–, https://doi.org/10.3389/fclim.2022.861477.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Rebert, J. P., J. R. Donguy, G. Eldin, and K. Wyrtki, 1985: Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. J. Geophys. Res., 90, 11 71911 725, https://doi.org/10.1029/JC090iC06p11719.

    • Search Google Scholar
    • Export Citation
  • Rhein, M. and Coauthors, 2013: Observations: Ocean. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 255–316.

  • Rouault, M., P. Penven, and B. Pohl, 2009: Warming in the Agulhas Current system since the 1980’s. Geophys. Res. Lett., 36, L12602, https://doi.org/10.1029/2009GL037987.

    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., and Coauthors, 2020: Indian Ocean warming. Assessment of Climate Change over the Indian Region, Springer, 191–206.

  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, https://doi.org/10.1016/S0079-6611(02)00039-3.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002–, https://doi.org/10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, F. U., and C. W. Böning, 2011: Contribution of Pacific wind stress to multi-decadal variations in upper-ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett., 38, L12602, https://doi.org/10.1029/2011GL047651.

    • Search Google Scholar
    • Export Citation
  • Shi, J. R., L. D. Talley, S.-P. Xie, W. Liu, and S. T. Gille, 2020: Effects of buoyancy and wind forcing on Southern Ocean climate change. J. Climate, 33, 10 00310 020, https://doi.org/10.1175/JCLI-D-19-0877.1.

    • Search Google Scholar
    • Export Citation
  • Slangen, A. B. A., M. Carson, C. A. Katsman, R. S. W. van de Wal, A. Köhl, L. L. A. Vermeersen, and D. Stammer, 2014: Projecting twenty-first century regional sea-level changes. Climatic Change, 124, 317332, https://doi.org/10.1007/s10584-014-1080-9.

    • Search Google Scholar
    • Export Citation
  • Srinivasu, U., M. Ravichandran, W. Han, S. Sivareddy, H. Rahman, Y. Li, and S. Nayak, 2017: Causes for the reversal of north Indian Ocean decadal sea level trend in recent two decades. Climate Dyn., 49, 38873904, https://doi.org/10.1007/s00382-017-3551-y.

    • Search Google Scholar
    • Export Citation
  • Swart, N. C., S. T. Gille, J. C. Fyfe, and N. P. Gillett, 2018: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci., 11, 836841, https://doi.org/10.1038/s41561-018-0226-1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749, https://doi.org/10.1038/ngeo1296.

    • Search Google Scholar
    • Export Citation
  • Timmermann, A., S. McGregor, and F.-F. Jin, 2010: Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Climate, 23, 44294437, https://doi.org/10.1175/2010JCLI3519.1.

    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2008: Causes of decadal subsurface cooling in the tropical Indian Ocean during 1961–2000. Geophys. Res. Lett., 35, L17602, https://doi.org/10.1029/2008GL034687.

    • Search Google Scholar
    • Export Citation
  • Trenary, L. L., and W. Han, 2013: Local and remote forcing of decadal sea level and thermocline depth variability in the south Indian Ocean. J. Geophys. Res. Oceans, 118, 381398, https://doi.org/10.1029/2012JC008317.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 31293144, https://doi.org/10.1175/JCLI-D-13-00294.1.

    • Search Google Scholar
    • Export Citation
  • Tsujino, H., and Coauthors, 2018: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modell., 130, 79139, https://doi.org/10.1016/j.ocemod.2018.07.002.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., A. Biastoch, and C. W. Böning, 2017: Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Climate, 30, 1739–1751, https://doi.org/10.1175/JCLI-D-16-0200.1.

    • Search Google Scholar
    • Export Citation
  • Ummenhofer, C. C., S. Ryan, M. H. England, M. Scheinert, P. Wagner, A. Biastoch, and C. W. Böning, 2020: Late 20th century Indian Ocean heat content gain masked by wind forcing. Geophys. Res. Lett., 47, e2020GL088692, https://doi.org/10.1029/2020GL088692.

    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

    • Search Google Scholar
    • Export Citation
  • Vidya, P. J., M. Ravichandran, R. Murtugudde, M. P. Subeesh, S. Chatterjee, S. Neetu, and M. Nuncio, 2020: Increased cyclone destruction potential in the Southern Indian Ocean. Environ. Res. Lett., 16, 014027, https://doi.org/10.1088/1748-9326/abceed.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the south Indian Ocean heat content and sea level in 2014–2018. Sci. Adv., 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2019: Three-ocean interactions and climate variability: A review and perspective. Climate Dyn., 53, 51195136, https://doi.org/10.1007/s00382-019-04930-x.

    • Search Google Scholar
    • Export Citation
  • Wang, J., J. A. Church, X. Zhang, and X. Chen, 2021: Reconciling global mean and regional sea level change in projections and observations. Nat. Commun., 12, 990, https://doi.org/10.1038/s41467-021-21265-6.

    • Search Google Scholar
    • Export Citation
  • Wernberg, T., D. A. Smale, F. Tuya, M. S. Thomsen, T. J. Langlois, T. de Bettignies, S. Bennett, and C. S. Rousseaux, 2013: An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Climate Change, 3, 7882, https://doi.org/10.1038/nclimate1627.